Platinum(II) Complexes with π -Conjugated, Naphthyl-Substituted, Cyclometalated Ligands (RC^N^N): Structures and Photo- and Electroluminescence

Steven C. F. Kui,^[a] Iona H. T. Sham,^[a] Cecil C. C. Cheung,^[a] Chun-Wah Ma,^[a] Beiping Yan,^[a] Nianyong Zhu,^[a] Chi-Ming Che,^{*[a]} and Wen-Fu Fu^[b]

Abstract: The crystal structures and photophysical properties of mononu- $[(RC^N^N)PtX](ClO_4)_n$ clear $((RC^N^N) = 3 - (6' - (2'' - naphthyl) - 2'$ pyridyl)isoquinolinyl and derivatives; $X = Cl, n = 0; X = PPh_3 \text{ or } PCy_3, n = 1),$ dinuclear [(RC^N^N)₂Pt₂(μ -dppm)]-(dppm=bis(diphenyphosphi- $(ClO_4)_2$ no)methyl) and trinuclear $[(RC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3$ (dpmp=bis(diphenylphosphinomethyl)phenylphosphine) complexes are presented. The crystal structures show extensive intra- and/or intermolecular

 $\pi \cdots \pi$ interactions; the two (RC^N^N) planes of [(RC^N^N)_2Pt_2(\mu-dppm)]-(ClO₄)₂ (R=Ph, 3,5-*t*Bu₂Ph or 3,5-(CF₃)₂Ph) are in a nearly eclipsed configuration with torsion angles close to 0°. [(RC^N^N)PtCl], [(RC^N^N)_2Pt_2-(\mu-dppm)](ClO₄)₂, and [(RC^N^N)_3Pt_3(\mu-dpmp)](ClO₄)₃ are strongly emissive with quantum yields

Keywords: electroluminescence • OLEDs • photoluminescence • pi interactions • platinum of up to 0.68 in CH₂Cl₂ or MeCN solution at room temperature. The [(RC^N^N)PtCl] complexes have a high thermal stability $(T_{\rm d} = 470 -$ 549°C). High-performance light-emitting devices containing $[(RC^N^N)PtCl]$ (R=H or 3.5 tBu_2Ph) as a light-emitting material have been fabricated; they have a maximum luminance of 63000 cd m^{-2} and CIE 1931 coordinates at x=0.36, y=0.54.

Introduction

Platinum(II) complexes containing aromatic *N*-donor and/or cyclometalated ligands are known to display a variety of emissive excited states, including ligand-field (LF), metal-to-ligand charge transfer (MLCT), intraligand (IL) π – π *, excimeric σ *(π)→ σ (π *), and oligometric metal–metal-to-ligand charge-transfer (MMLCT) d\sigma*(dz^2)→ σ (π *) ones.^[1–17] The relative energy of these excited states is strongly affected by

[a]	Dr. S. C. F. Kui, Dr. I. H. T. Sham, C. C. C. Cheung, CW. Ma,
	Dr. B. Yan, Dr. N. Zhu, Prof. CM. Che
	Department of Chemistry and the HKU-CAS Joint Laboratory on
	New Materials
	The University of Hong Kong, Pokfulam Road
	Hong Kong Special Administrative Region (China)
	Fax: (+852)2857-1586
	E-mail: cmche@hku.hk
[b]	Prof. Dr. WF. Fu
	Technical Institute of Physics and Chemistry
	Chinese Academy of Science
	Peking 100101 (China)
	Supporting Information for this article is available on the WWW
	under http://www.chemeurj.org/ or from the author.

states, which are strongly affected by $Pt^{II}-Pt^{II}$ and/or ligandligand interactions.^[12,13,16-18] Several classes of diplatinum(II) complexes of the type $[Pt_2(tpy)_2(\mu-L)]^{n+}$, $[Pt_2(C^N^N)_2(\mu-L)]^{n+}$ and $[(C^N)Pt(\mu-pz)_2Pt(C^N)]$ (tpy=2,2'.6',2''-terpyridyl; (C^N^N)=6-phenyl-2,2'-bipyridyl; L=guanidine, pyrazole, azaindole, diphenylformamidine, arginine or bis(diphenyphosphino)methyl; (C^N)=2-(2,4-difluorophenyl)pyridyl; pz=pyrazolate derivatives) with intramolecular Pt-Pt contacts ranging from 2.998 to 3.432 Å are known to be emissive.^[4,13,17-20] However, except for $[(C^N)Pt(\mu-pz)_2Pt (C^N)]$,^[4] the ³MMLCT excited states of most reported dinuclear Pt^{II} complexes have a relatively low emission quantum yield and short lifetime in solution at room temperature.^[9,13,17,20]

subtle changes in the local environment in which the Pt^{II} complex is located.^[1,3,5–11,16,17] Of particular interest is the interplay between ³MLCT/³IL and ³MMLCT emissive excited

In the course of our studies on $[(C^N^N)PtX]$ complexes $((C^N^N)=6$ -phenyl-2,2'-bipyridyl, X=Cl, PPh₃, acetylide, etc.), we have observed that: 1) the (C^N^N) ligand shows a strong preference for a planar geometry and can therefore be expected to disfavor the excited-state distortion that pro-

motes radiationless decay;^[11,21] 2) the π -conjugation and strong σ -donor strength of the deprotonated carbon donor of the (C^N^N) ligand increase the energy gap between the d-d and MLCT excited states;^[21-24] and 3) the ability to vary the ancillary ligand X and ease of modification of the (C^N^N) ligand are advantageous for structural modification of [(C^N^N)PtX] complexes with tuneable photophysical properties.^[12,13,15,16,19,20] We therefore envisioned that the intraand intermolecular interactions between $[(C^N^N)Pt]^+$ moieties could be varied by enhancing noncovalent $\pi \cdots \pi$ interactions through the use of extended π conjugated cyclometalated ligands.^[16,25] In this work, we have replaced the 6-phenyl-2,2'-bipyridyl (C^N^N) ligand with 3-(6'-(2"-naphthyl)-2'-pyridyl)isoquinolinyl ligands (denoted as (RC^N^N) hereafter; Figure 1). The use of extended π -conjugated aromatic diimine ligands has been reported to lead to a relatively long-lived ³MLCT excited state, as in the case of [Ru(dqpy)dtp]⁺ (dqpy=2,6-diisoquinolyl-(4-tolyl)pyridyl; dtpH=2,9-bis(p-tolyl)-1,10-phenanthroline).^[26] Here, the synthesis, crystal structures and emissive properties of the mononuclear 3-(6'-(2"-naphthyl)-2'-pyridyl)isoquinolinyl complexes $[(RC^N^N)PtX](ClO_4)_n$ (X=Cl, n=0, **1a-1f**; X=PPh₃, n=1, **3c**; X=PCy₃ (Cy=cyclohexyl), n=1, **4b** and **4c**), the dinuclear complexes $[(RC^N^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (dppm=bis(diphenyphosphino)methyl, **2a-2f**) as well as the trinuclear complexes $[(RC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3$ (dpmp=bis(diphenylphosphinomethyl)phenylphosphine, **5b** and **5d**; Figure 1) are reported. Complexes **1a** and **1d** have been tested for the fabrication of OLEDs.

Results and Discussion

The series of (RC^N^NH) ligands **a**-**f** was synthesized with product yields of 55–88%. Attempts to prepare [(RC^N^N)PtCl] by the reaction of (RC^N^NH) with K₂PtCl₄ in acetonitrile solution^[27] were unsuccessful. However, we found that if glacial acetic acid was used as the solvent, **1a–1f** could be obtained in yields of up to 92% (Scheme 1). The mononuclear complexes **3c**, **4b** and **4c**, dinuclear complexes **2a–2f**, and trinuclear complexes **5b** and **5d** were obtained by stirring [(RC^N^N)PtCl] with the re-

Figure 1. Structures and numbering scheme of ligands a-f as well as complexes 1a-1f, 2a-2f, 3c, 4b, 4c, 5b and 5d for NMR peak assignment.

418 -

Scheme 1. The synthesis of 1a–1f, 2a–2f, 3c, 4b, 4c, and 5b. The X and R groups and yields are given in parentheses.

spective PPh₃, PCy₃, dppm, or dpmp ligand in a MeCN/ CH_2Cl_2 solution (Scheme 1); they were isolated as ClO_4^- salts.

Physical characterizations: The FAB-mass spectra reveal prominent molecular ion $[M^+]$ peaks for **1a-1f**, a $[M-\text{ClO}_4]^+$ peak for **3c**, **4b**, and **4c**, $[M-\text{ClO}_4]^+$ or $[M-2-(\text{ClO}_4)]^+$ peaks for **2a-2f**, and $[M-\text{ClO}_4]^+$, $[M-2(\text{ClO}_4)]^+$, or $[M-3(\text{ClO}_4)]^+$ peaks for **5b** and **5d**. The atom numbering scheme of ligands **a-f** and complexes **1a-1f**, **2a-2f**, **3c**, **4b**, **4c**, **5b** and **5d** for NMR peak assignments are depicted in Figure 1. The spatial relationship of the protons in the $[(\text{RC}^N^N)\text{PtCl}]$ complexes was assigned based on the results of ¹H-¹H correlation and NOESY 2D NMR experiments.

The ³¹P NMR spectra of 2a-2f show one intense signal with ¹⁹⁵Pt satellites (${}^{1}J_{P,Pt} \approx 4250 \text{ Hz}$). Similar findings have previously been obtained for $[(C^N^N)_2Pt_2(\mu-dppm)]$ - $(\text{ClO}_4)_2$ (¹ $J_{P,Pt} \approx 4110 \text{ Hz}),^{[16,18,20]}$ $[(C^N^C)_2Pt_2(\mu-dppm)]$ $((C^N^C) = 2, 6 - diphenylpyridyl and derivatives; {}^{1}J_{P,Pt}$ \approx 4150 Hz)^[28] and [(RC^N^C)₂Pt₂(µ-dppm)] ((RC^N^C) = 2,6-di-(2'-naphthyl)pyridyl and derivatives; ${}^{1}J_{P,Pt}$ \approx 4250 Hz).^[25] There is a close match between the ³¹P NMR spectrum of 2d and the simulated spectrum based on an AA'XX' system^[29] (${}^{1}J_{P,Pt}$ =4200 and ${}^{2}J_{P,Pt}$ =80 Hz). The two phosphorus atoms of the Pt-P-CH₂-P-Pt bridge in 2a-2f are indistinguishable at room temperature; however, broadening of the signals was observed in deuterated MeCN as the temperature was lowered from 0 to -45 °C. No fluxional behavior was observed for 2a-2f.

The ³¹P NMR spectrum of **5d** reveals two signals at δ = 9.7 (central) and 11.7 ppm (terminal) with ¹⁹⁵Pt satellites (¹J_{P,Pt}=4042 and 4094 Hz, respectively), and its ¹⁹⁵Pt (s¹⁹P) NMR spectrum shows two doublets at δ = -3727.8 (central) and -3886.5 ppm (terminal) with ¹J_{P,Pt}=3995 and 4070 Hz, respectively. The NMR spectroscopic data are consistent with two chemically inequivalent phosphorus atoms in **5d**.^[16]

Thermogravimetric analysis (TGA) revealed that the [(RC^N^N)PtCl] complexes **1a–1f** decompose at temperatures above 470 °C (T_d =470–549 °C, Table 1). The mononuclear complexes with PPh₃ or PCy₃ ligands (**3c**, **4b** and **4c**) have a lower T_d (320–376 °C) than their Cl congeners **1a–1f**. The dinuclear complexes **2a–2f** decompose above 370 °C (T_d =376–385 °C) and the trinuclear complexes **5b** and **5d** decompose at 421 and 337 °C, respectively (Table 1). No glass transition was observed in differential scanning calorimetric (DSC) studies for **1a–1f** and **2a–2f** in scans up to 400 °C, thus indicating that the glass-transition temperatures (T_s) of these complexes are above 400 °C.

Cyclic voltammetry: The electrochemical data of 1a-1f, 2a-2f, 3c, 4b, 4c, 5b, and 5d are summarized in Table 1. The cyclic voltammograms of 1d and 2d are depicted in

Table 1. Thermogravimetric and electrochemical data^[a] of 1a-1f, 2a-2f, 3c, 4b, 4c, 5b and 5d.

Complex	$T_{\rm d}^{[b]}$ [°C]	Reduction $E_{1/2}$ [V] ^[c]	Quasi-reversible couple ^[c]	Anodic peak E_{pa} [V] ^[c]
1a	470	-1.76	_	0.44
1b	484	-1.86	-	0.54
1c	509	-1.73	-	0.45
1 d	532	-1.73	_	0.58
1e	479	-1.70	-	0.37
1f	549	-1.66	_	0.56
2 a	385	-1.48	-1.67	-
2b	378	-1.52	-1.75	_
2c	376	-1.43	-1.69	_
2 d	380	-1.51	-1.69	_
2e	379	-1.32, -1.53	_	_
2 f	381	-1.28, -1.48	-	-
3c	376	-1.52	_	_
4b	320	-1.60	_	_
4c	349	-1.55	_	_
5b	421	-1.68	_	0.53
5d	337	-1.44, -1.62	_	0.63

[a] Determined in DMF at 298 K with 0.1 m nBu_4NPF_6 as the supporting electrolyte; scan rate = 50 mV s⁻¹. [b] Decomposition temperature. [c] Value versus $E_{\frac{1}{2}}$ (Cp₂Fe^{+/0}) (0.11–0.13 V versus Ag/AgNO₃ (0.1 m in MeCN) reference electrode).

Figure 2. Complexes **1a–1f**, **3c**, **4b**, and **4c** show one reversible reduction couple $(E_{\frac{1}{2}} = -1.52 \text{ to } -1.86 \text{ V} \text{ versus} [Cp_2Fe]^{+/0})$ in DMF solution at 298 K; this couple presumably corresponds to reduction of the (RC^N^N) ligand. The $E_{\frac{1}{2}}$ of this reduction couple for **1b** occurs at -1.86 V, while it is anodically shifted to -1.66 V for **1f** due to the electron-withdrawing 3,5-(CF₃)Ph substituent on the (RC^N^N) ligand. Complexes **1a–1f** show an irreversible oxidation wave in the range $E_{\text{pa}} = 0.37-0.58 \text{ V}$ versus Cp₂Fe^{+/0}.

The dinuclear complexes **2a–2d** show two reduction couples in the ranges $E_{\frac{1}{2}} = -1.43$ to -1.52 (reversible) and -1.67 to -1.75 V (quasi-reversible), respectively, versus $[Cp_2Fe]^{+/0}$. The trinuclear complex **5b** shows one reversible reduction couple at $E_{\frac{1}{2}} = -1.68$ V, whereas **5d** shows two reversible couples at $E_{\frac{1}{2}} = -1.44$ and -1.62 V, respectively. These reduction couples are presumably ligand-centered. The observation of two reversible reduction couples for the dinuclear and trinuclear Pt^{II} complexes, whereas only one ligand-centered reduction couple is observed for its mononuclear congeners, suggests coupling between the [(RC^NN^N)Pt] units upon reduction.^[13,16,20]

Crystal structures: X-ray crystal data^[30] as well as selected bond distances and angles for 1a, 1c, 2a-2d, 2f, 3c, 4b, 4c, and 5b are listed in Table 2 and Table 3, respectively. Perspective views are depicted in the figures below. The coordination geometries of 1a, 1c, 3c, 4b, and 4c (Figure 3) are similar to that of the 6-phenyl-2,2'-bipyridyl congener [(C^N^N)PtCl]. In each case, the Pt atom adopts a distorted square-planar geometry, as revealed by the N(1)-Pt(1)-C(1) angle of 163.1(3)° in **1a**, the N(1)-Pt(1)-C(16) angle of 163.1(8)° in 1c, the N(1)-Pt(1)-C(1) angle of 158.4(5)° in 3c, the N(2)-Pt(1)-C(16) angle of 156.3(2)° in 4b and the N(2)-Pt(1)-C(1) angle of 156.6(2)° in 4c; these angles deviate significantly from 180°. The coordinating O, N, Pt and Cl atoms in 1a and 1c are close to co-planar, with the Cl atom lying out of the plane by only 3.6° and 2.2°, respectively. On the other hand, the PPh₃ or PCy₃ groups of 3c, 4b and 4c lie out of the plane by 7.0°, 19.6° and 14.1°, respectively. We suggest that intermolecular $\pi \cdots \pi$ interactions between neighboring $[(RC^N^N)Pt(PR_3)]^+$ molecules would be enhanced by bending of the phosphine ligand out of the Pt^{II} coordination plane such that the (RC^N^N) planes are in proximity. The Pt-N distances in 1a, 1c, 3c, 4b and 4c are 1.9-2.2 Å (Table 3); these values are comparable to those in $[(C^N^N)Pt(PPh_3)]ClO_4$ ((C^N^N)=6-phenyl-2,2'-bipyridyl; Pt-N=1.985 and 2.12 Å),^[20] [(O^N^N)PtCl]·CH₂Cl₂ $((O^N^N) = 6 - (2 - hydroxyphenyl) - 2, 2' - bipyridyl; 2.00 Å)$ ^[31] $[(tBuO^N^N)PtCl]$ $((tBuO^N^N) = 4,4'-di-tert-butyl-6-(2$ hydroxyphenyl)-2,2'-bipyridyl; 1.979 and 2.006 Å)^[32] and [Pt- (N_2O_2)] $(H_2(N_2O_2) = bis(2'-phenol)bipyridine or -phenan$ throline; 1.960 and 1.978 Å).^[33] The Pt-Cl distances in 1a (2.3136 Å) and **1c** (2.314 Å) resemble those of [(O^N^N)PtCl] and [($tBuO^N^N$)PtCl] (2.3 Å).^[31,32] For **3c**, **4b**, and **4c**, the Pt-P (2.253, 2.2826 and 2.2971 Å, respectively) and Pt-C distances (2.001, 2.054 and 2.041 Å, respectively) are similar to those in [(C^N^N)Pt(PPh₃)]ClO₄ (Pt-

Figure 2. Cyclic voltammograms of **1d** (top, 10^{-4} M) and **2d** (bottom, 10^{-4} M) in DMF containing 0.1 M *n*BuNPF₆ as supporting electrolyte at 298 K. Scan rate: 50 mV s^{-1} .

420

Table 2. Crystal data of 1a, 1c, 2a–2d, 2f, 3c, 4b, 4c, and 5b.

FULL PAPER

complex	1a	1c	3c		4b		4c
formula	$C_{24}H_{15}ClN_2Pt{\cdot}CHCl_3$	$C_{30}H_{19}CIN_2Pt \cdot 2.5 CHC$	$Cl_3 C_{48}H_{33}ClN_2O_4$	PPt·CH ₃ OH	C46H56ClN2	2O4PPt·2CH3CN	C ₄₈ H ₅₂ ClN ₂ O ₄ - PPt-0.5 CH ₂ CN
FW	681 29	936 43	995 32		1044 55		1002.95
color	vellow	vellow	vellow		vellow		vellow
crustal size [mm ³]	$0.6 \times 0.15 \times 0.1$	$0.50 \times 0.10 \times 0.06$	$0.35 \times 0.15 \times 0$	06	$0.3 \times 0.2 \times 0$	2	$0.4 \times 0.35 \times 0.2$
crystal system	monoclinic	triclinic	triclinic	.00	monoclinic		monoclinic
space group	P2 / m	$P\bar{1}$ (no. 2)	$P\bar{1}$ (no. 2)		P2 / n		C2/c
	$\frac{1}{2} \frac{2}{n}$	10,206(2)	10,712(2)		$1 2_1/n$ 16 422(2)		$C_{2/l}$
u [A] b [Å]	7.920(2)	10.300(2) 14.427(2)	10.713(2) 12.200(2)		10.423(3) 17.076(4)		20.100(3) 14.708(3)
• [Å]	19.301(4) 15.200(2)	14.437(3)	15.500(5)		17.970(4)		14.706(3)
C[A]	13.290(3)	24.212(3)	10.081(3)		17.270(4)		24.032(3)
α['] α[0]	90	98.21(3)	/1.//(3)		90		90
D []	100.28(5)	100.58(5)	/5.45(3)		110.42(3)		99.88(3)
γ[*] τζ [Å 3]	90	96.48(3)	//.53(3)		90		90
V [A ⁵]	2308.7(8)	3468.9(12)	2082.8(7)		4//8.1(18)		9127(3)
Ζ _31	4	4	2		4		8
o _{calcd} [g cm ⁻⁵]	1.960	1.793	1.587		1.452		1.460
$u \left[\text{mm}^{-1} \right]$	6.558	4.726	3.522		3.073		3.214
F(000)	1304	1812	990		2128		4056
$2\theta_{\max}$ [°]	50.98	47.4	45.00		51.24		50.68
no. unique data	4003	5398	2839		8321		7091
Gof $[F^2]$	1.06	0.89	0.730		0.833		0.92
$R^{[a]}$	0.040	0.061	0.049		0.035		0.031
$R_{\rm w}^{[b]}$	0.102	0.11	0.103		0.072		0.076
residual $ ho$ [e Å $^{-3}$]	1.389, -1.314	1.276, -0.970	0.808, -0.597		0.851, -1.4	58	0.594, -0.602
CCDC number	601687	287984	287987		287985		287988
	-		•			• •	
Complex	2a	2 b	2c	2 d		2 f	50
Complex formula	2 a C ₇₃ H ₅₂ Cl ₂ N ₄ O ₈ -	2b C ₈₁ H ₆₈ Cl ₂ N ₄ O ₈ -	2c C ₈₅ H ₆₀ Cl ₂ N ₄ O ₈ -	$\frac{2 d}{C_{101}H_{92}Cl_2N_4O}$	8-	2 f C ₈₉ H ₅₆ Cl ₂ F ₁₂ N ₄ O ₈ -	5 b C ₁₁₆ H ₉₈ Cl ₃ N ₆ O ₁₂ -
formula	$\frac{2a}{C_{73}H_{52}Cl_2N_4O_8}$ $P_2Pt_2 \cdot 0.5 CH_3CN \cdot H_2O$	2b C ₈₁ H ₆₈ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·2 CH ₃ CN	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_8}$ $P_2Pt_2 \cdot 3 CH_3CN$	$\frac{2 d}{C_{101}H_{92}Cl_2N_4O}$ $P_2Pt_2 \cdot 2 CH_2Cl_2$	8- ∙C4H10O	$\frac{2 f}{C_{89}H_{56}Cl_2F_{12}N_4O_8}$ $\frac{P_2Pt_2 \cdot 6 CH_2Cl_2}{P_2Pt_2 \cdot 6 CH_2Cl_2}$	5b C ₁₁₆ H ₉₈ Cl ₃ N ₆ O ₁₂ - P ₃ Pt ₃ ·2 CH ₃ CN
Complex formula FW	2a C ₇₃ H ₅₂ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·0.5 CH ₃ CN·H ₂ O 1674.75	2b C ₈₁ H ₆₈ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·2 CH ₃ CN 1830.52	2c C ₈₅ H ₆₀ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·3 CH ₃ CN 1910.54	$\begin{array}{c} 2 \ d \\ \\ C_{101}H_{92}Cl_2N_4C \\ P_2Pt_2 \cdot 2 \ CH_2Cl_2 \\ 2256.78 \end{array}$	8- ∙C₄H ₁₀ O	$\frac{2 f}{C_{89}H_{56}Cl_2F_{12}N_4O_8} + \frac{1}{2}P_2Pt_2 \cdot 6 CH_2Cl_2}{2569.95}$	50 C ₁₁₆ H ₉₈ Cl ₃ N ₆ O ₁₂ - P ₃ Pt ₃ ·2 CH ₃ CN 2634.64
Complex formula FW color	2a C ₇₃ H ₅₂ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·0.5 CH ₃ CN·H ₂ O 1674.75 yellow	2b C ₈₁ H ₆₈ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·2 CH ₃ CN 1830.52 yellow	2c C ₈₅ H ₆₀ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·3 CH ₃ CN 1910.54 yellow	2d C ₁₀₁ H ₉₂ Cl ₂ N ₄ O P ₂ Pt ₂ ·2 CH ₂ Cl ₂ 2256.78 orange	8- ∙C₄H10O	$\frac{2 \text{ f}}{C_{89}H_{56}Cl_2F_{12}N_4O_8}$ $P_2Pt_2\cdot 6 CH_2Cl_2$ 2569.95 orange	5b C ₁₁₆ H ₉₈ Cl ₃ N ₆ O ₁₂ . P ₃ Pt ₃ ·2 CH ₃ CN 2634.64 yellow
Complex formula FW color crystal size [mm ³]	2a C ₇₃ H ₅₂ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·0.5 CH ₃ CN·H ₂ O 1674.75 yellow 0.30×0.20×0.15	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN\\ 1830.52\\ yellow\\ 0.35\times 0.30\times 0.25 \end{array}$	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_8}$ $P_2Pt_2\cdot 3 CH_3CN$ 1910.54 $yellow$ $0.35 \times 0.20 \times 0.10$	$\begin{array}{c} \textbf{2d} \\ \hline C_{101}H_{92}Cl_2N_4C \\ P_2Pt_2\cdot 2\ CH_2Cl_2 \\ 2256.78 \\ orange \\ 0.50\times 0.25\times 0.1 \end{array}$	98 ⁻ •C₄H10O	$\begin{array}{c} 2 \ f \\ \\ C_{89} H_{56} Cl_2 F_{12} N_4 O_{8^-} \\ P_2 Pt_2 \cdot 6 \ CH_2 Cl_2 \\ 2569.95 \\ orange \\ 0.40 \times 0.15 \times 0.12 \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12}, \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system	2a C ₇₃ H ₅₂ Cl ₂ N ₄ O ₈ - P ₂ Pt ₂ ·0.5 CH ₃ CN·H ₂ O 1674.75 yellow 0.30×0.20×0.15 monoclinic	2b $C_{81}H_{68}Cl_2N_4O_{8}$ - $P_2Pt_2 \cdot 2 CH_3CN$ 1830.52 yellow $0.35 \times 0.30 \times 0.25$ monoclinic	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_8}$ $P_2Pt_2\cdot 3 CH_3CN$ 1910.54 $yellow$ $0.35 \times 0.20 \times 0.10$ triclinic	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2 \cdot 2 CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic	$^{-8-} \cdot C_4 H_{10} O$	$\frac{2 f}{C_{89} H_{56} Cl_2 F_{12} N_4 O_{8^-}} \\ \frac{P_2 Pt_2 \cdot 6 CH_2 Cl_2}{2569.95} \\ orange \\ 0.40 \times 0.15 \times 0.12 \\ monoclinic$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12}^{-1} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - $P_2Pt_2.0.5 CH_3CN \cdot H_2O$ 1674.75 yellow $0.30 \times 0.20 \times 0.15$ monoclinic $P2_1/c$	2b $C_{81}H_{68}Cl_2N_4O_{8}$ - $P_2Pt_2 \cdot 2 CH_3CN$ 1830.52 yellow $0.35 \times 0.30 \times 0.25$ monoclinic C2/c	2c $C_{85}H_{60}Cl_2N_4O_8$ - $P_2Pt_2\cdot 3 CH_3CN$ 1910.54 yellow $0.35 \times 0.20 \times 0.10$ triclinic $P\bar{1}$ (no. 2)	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$	98 ⁻ •C₄H ₁₀ O	$\frac{2 f}{C_{89}H_{36}Cl_2F_{12}N_4O_{8^-}} \\ \frac{2 f}{P_2Pt_2\cdot 6 CH_2Cl_2} \\ \frac{2 569.95}{2569.95} \\ \frac{0.40 \times 0.15 \times 0.12}{0.15 \times 0.12} \\ \frac{1}{2} \\ \frac{2}{2} \\ \frac{1}{2} \\ \frac$	5b $C_{116}H_{98}Cl_3N_6O_{12}$ $P_3Pt_3 \cdot 2 CH_3CN$ 2634.64 yellow $0.35 \times 0.3 \times 0.2$ orthorhombic $P2_12_12_1$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å]	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - P_2Pt_2·0.5 CH_3CN·H_2O 1674.75 yellow 0.30×0.20×0.15 monoclinic $P2_1/c$ 23.309(5)	2b $C_{81}H_{68}Cl_2N_4O_{8}$ - $P_2Pt_2\cdot 2 CH_3CN$ 1830.52 yellow $0.35 \times 0.30 \times 0.25$ monoclinic C2/c 13.315(3)	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_8}$ $P_2Pt_2\cdot 3 CH_3CN$ 1910.54 $yellow$ $0.35 \times 0.20 \times 0.10$ triclinic $P\bar{1}$ (no. 2) 12.435(3)	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3)	² 8 [−] ·C ₄ H ₁₀ O	$\frac{2 f}{C_{89}H_{36}Cl_2F_{12}N_4O_{8^-}} \\ \frac{2 f}{P_2Pt_2\cdot 6 CH_2Cl_2} \\ \frac{2 569.95}{2569.95} \\ \frac{0.40 \times 0.15 \times 0.12}{0.15 \times 0.12} \\ \frac{1}{22.067} \\ \frac{22.067}{4} \\ \frac{22}{22.067} \\ \frac{1}{4} \\ \frac{1}{22.067} \\ \frac{1}{22.06$	5b $C_{116}H_{98}Cl_3N_6O_{12}$ $P_3Pt_3 \cdot 2 CH_3CN$ 2634.64 yellow $0.35 \times 0.3 \times 0.2$ orthorhombic $P2_12_12_1$ 14.402(3)
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å]	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - P_2Pt_2·0.5 CH_3CN·H_2O 1674.75 yellow 0.30×0.20×0.15 monoclinic $P2_1/c$ 23.309(5) 14.645(3)	2b $C_{81}H_{68}Cl_2N_4O_{8}$ - $P_2Pt_2 \cdot 2 CH_3CN$ 1830.52 yellow $0.35 \times 0.30 \times 0.25$ monoclinic C2/c 13.315(3) 27.131(5)	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_8}$ $P_2Pt_2\cdot 3 CH_3CN$ 1910.54 $yellow$ $0.35 \times 0.20 \times 0.10$ triclinic $P\bar{1}$ (no. 2) 12.435(3) $15.434(3)$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7)	² 8 [−] •C₄H ₁₀ O	$\frac{2f}{C_{89}H_{36}Cl_2F_{12}N_4O_{8^-}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2000}{C_{80}} \\ \frac{2000}{C_$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12}^{-1} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å]	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - P_2Pt_2·0.5 CH_3CN·H_2O 1674.75 yellow 0.30×0.20×0.15 monoclinic $P2_1/c$ 23.309(5) 14.645(3) 19.144(4)	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ \hline C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \end{array}$	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_{8^-}} \\ P_2Pt_2\cdot 3 CH_3CN \\ 1910.54 \\ yellow \\ 0.35 \times 0.20 \times 0.10 \\ triclinic \\ P\bar{1} (no. 2) \\ 12.435(3) \\ 15.434(3) \\ 22.325(5) \\ \end{bmatrix}$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2 CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4)	² 8 [−] •C₄H ₁₀ O	$\frac{2f}{C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2569.95}{C_{80}} \\ \frac{2000}{C_{80}} \\ \frac{2000}{C_$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2 \ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] b [Å] c [Å] α [°]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 0.5\ CH_3CN\cdot H_2O\\ 1674.75\\ yellow\\ 0.30\times 0.20\times 0.15\\ monoclinic\\ P2_1/c\\ 23.309(5)\\ 14.645(3)\\ 19.144(4)\\ 90 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \end{array}$	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_{8^-}} \\ P_2Pt_2\cdot 3 CH_3CN \\ 1910.54 \\ yellow \\ 0.35 \times 0.20 \times 0.10 \\ triclinic \\ P\bar{1} (no. 2) \\ 12.435(3) \\ 15.434(3) \\ 22.325(5) \\ 108.25(3) \\ \end{cases}$	$\begin{array}{c} \textbf{2d} \\ \hline \\ C_{101}H_{92}Cl_2N_4O \\ P_2Pt_2\cdot 2 CH_2Cl_2 \\ 2256.78 \\ orange \\ 0.50\times 0.25\times 0.1 \\ monoclinic \\ P2_1/n \\ 15.672(3) \\ 34.206(7) \\ 19.870(4) \\ 90 \end{array}$	98 ⁻ •C₄H ₁₀ O	$\frac{2f}{C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}} \\ \frac{P_2Pt_2\cdot 6CH_2Cl_2}{2569.95} \\ orange \\ 0.40\times 0.15\times 0.12 \\ monoclinic \\ \frac{C2}{c} \\ 22.067(4) \\ 25.992(5) \\ 18.102(4) \\ 90 \\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] b [Å] c [Å] a [°] β [°]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 0.5\ CH_3CN\cdot H_2O\\ 1674.75\\ yellow\\ 0.30\times 0.20\times 0.15\\ monoclinic\\ P2_1/c\\ 23.309(5)\\ 14.645(3)\\ 19.144(4)\\ 90\\ 94.91(3)\\ \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \end{array}$	$\frac{2c}{C_{85}H_{60}Cl_2N_4O_{8^-}} \\ P_2Pt_2\cdot 3 CH_3CN \\ 1910.54 \\ yellow \\ 0.35 \times 0.20 \times 0.10 \\ triclinic \\ P\bar{1} (no. 2) \\ 12.435(3) \\ 15.434(3) \\ 22.325(5) \\ 108.25(3) \\ 93.07(3) \\ \end{bmatrix}$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2 CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3)	98 ⁻ •C₄H ₁₀ O	$\frac{2f}{C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}} \\ \frac{P_2Pt_2\cdot 6CH_2Cl_2}{2569.95} \\ orange \\ 0.40\times 0.15\times 0.12 \\ monoclinic \\ \frac{C2}{c} \\ 22.067(4) \\ 25.992(5) \\ 18.102(4) \\ 90 \\ 100.99(3) \\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] b [Å] c [Å] a [°] β [°] γ [°]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8}-\\ P_2Pt_2 0.5 CH_3CN \cdot H_2O\\ 1674.75\\ yellow\\ 0.30 \times 0.20 \times 0.15\\ monoclinic\\ P2_1/c\\ 23.309(5)\\ 14.645(3)\\ 19.144(4)\\ 90\\ 94.91(3)\\ 90 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3 \ CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3) \end{array}$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2 CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.3$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90	98- •C₄H ₁₀ O 10	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90 \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [2] V [Å ³]	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - $P_2Pt_2O.5 CH_3CN \cdot H_2O$ 1674.75 yellow $0.30 \times 0.20 \times 0.15$ monoclinic $P2_1/c$ 23.309(5) 14.645(3) 19.144(4) 90 94.91(3) 90 6511(2)	2b $C_{81}H_{68}Cl_2N_4O_{8}$ - $P_2Pt_2 \cdot 2 CH_3CN$ 1830.52 yellow $0.35 \times 0.30 \times 0.25$ monoclinic C2/c 13.315(3) 27.131(5) 21.041(4) 90 98.47(3) 90 7518(3)	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3 \ CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1} \ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4)	98 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4) \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [] V [Å ³] Z	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2O.5 CH_3CN\cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \end{array}$	$\begin{array}{c} 2c \\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3 \ CH_3CN \\ 1910.54 \\ yellow \\ 0.35\times 0.20\times 0.10 \\ triclinic \\ P\bar{1} \ (no.\ 2) \\ 12.435(3) \\ 15.434(3) \\ 22.325(5) \\ 108.25(3) \\ 93.07(3) \\ 105.80(3) \\ 3869.9(15) \\ 2 \end{array}$	$\begin{array}{c} \mathbf{2d} \\ \hline \\ C_{101}H_{92}Cl_2N_4O\\ P_2Pt_2\cdot 2 CH_2Cl_2\\ 2256.78\\ orange\\ 0.50\times 0.25\times 0.1\\ monoclinic\\ P2_1/n\\ 15.672(3)\\ 34.206(7)\\ 19.870(4)\\ 90\\ 106.16(3)\\ 90\\ 10231(4)\\ 4 \end{array}$	98 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 11002(4) \\ 4 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] γ [°] V [Å ³] Z ρ_{out} [g cm ⁻³]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2O.5 CH_3CN\cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3\ CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 102231(4) 4 1.465	⁹ 8 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 11002(4) \\ 4 \\ 1.591 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [Å ³] Z ρ_{calcd} [gcm ⁻³] u [mm ⁻¹]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2 \cdot 0.5 CH_3CN \cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786 \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.13$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977	⁹ 8 ⁻ •C₄H ₁₀ O 10	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] γ [°] V [Å ³] Z \mathcal{D}_{calcd} [gcm ⁻³] u [mm ⁻¹] F(000)	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2\cdot0.5\ CH_3CN\cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1} (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894 \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl$ $P_2Pt_2\cdot 2 CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977 4544	⁹ 8 ⁻ •C₄H ₁₀ O 10	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P_{2_12_12_1} \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] V [Å ³] Z D_{calcd} [g cm ⁻³] u (mm ⁻¹] F(000) $2\theta_{max}$ [°]	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2\cdot0.5\ CH_3CN\cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1} (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl_2P_4Cl_2P_4Cl_2Cl_2N_4Cl_22256.78$ orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977 4544 51.10	⁹ 8 [−] •C ₄ H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] β [°] γ [°] V [Å ³] Z o_{calcd} [g cm ⁻³] u [mm ⁻¹] F(000) $2 \partial_{max}$ [°] no, unique data	$\begin{array}{c} \textbf{2a} \\ \hline C_{73}H_{52}Cl_2N_4O_{8^-} \\ P_2Pt_2\cdot0.5\ CH_3CN\cdot H_2O \\ 1674.75 \\ yellow \\ 0.30 \times 0.20 \times 0.15 \\ monoclinic \\ P2_1/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ 7641 \\ \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_8-\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1} (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12.856\\ \end{array}$	2d $C_{101}H_{92}Cl_2N_4Cl_2P_4Cl_2P_4Cl_2Cl_2N_4Cl_22256.78$ orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977 4544 51.10 12371	⁹ 8 [−] •C ₄ H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ 8066\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14453 \\ \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] α [°] γ [°] γ [°] γ [°] γ [°] V [Å ³] Z o_{calcd} [g cm ⁻³] u [mm ⁻¹] F(000) $2\partial_{max}$ [°] no. unique data Gof [F^2]	$\begin{array}{c} \mathbf{2a} \\ \hline \mathbf{C}_{73}\mathbf{H}_{52}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O}_{8}\text{-} \\ \mathbf{P}_{2}\mathbf{P}_{12}\cdot0.5\ \mathbf{CH}_{3}\mathbf{CN}\cdot\mathbf{H}_{2}\mathbf{O} \\ 1674.75 \\ \text{yellow} \\ 0.30 \times 0.20 \times 0.15 \\ \text{monoclinic} \\ P2_{1}/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ 7641 \\ 0.87 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-P_2Pt_2\cdot 2CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ 1.08 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 38669.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12856\\ 0.93\\ \end{array}$	$\begin{array}{c} \mathbf{2d} \\ \hline \\ \mathbf{C}_{101}\mathbf{H}_{92}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O} \\ \mathbf{P}_{2}\mathbf{Pt}_{2}\cdot2\mathbf{CH}_{2}\mathbf{Cl}_{2} \\ 2256.78 \\ \text{orange} \\ 0.50\times0.25\times0.1 \\ \text{monoclinic} \\ P2_{1}/n \\ 15.672(3) \\ 34.206(7) \\ 19.870(4) \\ 90 \\ 106.16(3) \\ 90 \\ 10231(4) \\ 4 \\ 1.465 \\ 2.977 \\ 4544 \\ 51.10 \\ 12371 \\ 0.81 \end{array}$	² 8 ⁻ •C₄H ₁₀ O 10	$\begin{array}{c} 2f\\ C_{89}H_{56}Cl_2F_{12}N_4O_{8}^-\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ 8066\\ 0.93\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2 \ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14453 \\ 0.596 \end{array}$
Complex formula formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] $\alpha [°]$ $\beta [°]$ $\gamma [°]$ $V [Å^3]$ Z $\rho_{calcd} [gcm-3]$ $\mu [mm-1]$ F(000) $2\theta_{max} [°]$ no. unique data Gof $[F^2]$ $R^{[a]}$	$\begin{array}{c} \mathbf{2a} \\ \hline \mathbf{C}_{73}\mathbf{H}_{52}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O}_{8}^{-} \\ \mathbf{P}_{2}\mathbf{P}_{12}\cdot0.5\ \mathbf{CH}_{3}\mathbf{CN}\cdot\mathbf{H}_{2}\mathbf{O} \\ 1674.75 \\ \text{yellow} \\ 0.30\times0.20\times0.15 \\ \text{monoclinic} \\ P2_{1}/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ 7641 \\ 0.87 \\ 0.049 \\ \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-P_2Pt_2\cdot 2CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ 1.08 \\ 0.037 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12856\\ 0.93\\ 0.042\\ \end{array}$	$\begin{array}{c} \mathbf{2d} \\ \hline \\ C_{101}H_{92}Cl_2N_4O\\ P_2Pt_2\cdot 2 CH_2Cl_2\\ 2256.78\\ orange\\ 0.50\times 0.25\times 0.1\\ monoclinic\\ P2_1/n\\ 15.672(3)\\ 34.206(7)\\ 19.870(4)\\ 90\\ 106.16(3)\\ 90\\ 10231(4)\\ 4\\ 1.465\\ 2.977\\ 4544\\ 51.10\\ 12371\\ 0.81\\ 0.050\\ \end{array}$	² 8 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 50.68\\ 8066\\ 0.93\\ 0.046\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2 \ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14453 \\ 0.596 \\ 0.037 \\ \end{array}$
Complex formula formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [Å ³] Z v_{calcd} [g cm ⁻³] u [mm ⁻¹] F(000) $2\theta_{\text{max}}$ [°] no. unique data Gof [F^2] $R^{[a]}$ $R^{[a]}$	$\begin{array}{c} \mathbf{2a} \\ \hline \mathbf{C}_{73}\mathbf{H}_{52}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O}_{8}^{-} \\ \mathbf{P}_{2}\mathbf{P}_{12}\cdot0.5\ \mathbf{CH}_{3}\mathbf{CN}\cdot\mathbf{H}_{2}\mathbf{O} \\ 1674.75 \\ \text{yellow} \\ 0.30 \times 0.20 \times 0.15 \\ \text{monoclinic} \\ P2_{1}/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ 7641 \\ 0.87 \\ 0.049 \\ 0.11 \\ \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ 1.08 \\ 0.037 \\ 0.044 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12856\\ 0.93\\ 0.042\\ 0.062\\ \end{array}$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977 4544 51.10 12371 0.81 0.050 0.114	² 8 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ 8066\\ 0.93\\ 0.046\\ 0.072\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14453 \\ 0.596 \\ 0.037 \\ 0.082 \\ \end{array}$
Complex formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [Å ³] Z ρ_{calcd} [g cm ⁻³] μ [mm ⁻¹] F(000) $2\theta_{max}$ [°] no. unique data Gof [F^2] $R^{[n]}_{a}$ $R^{[n]}_{a}$ ρ [e, Å ⁻³]	2a $C_{73}H_{52}Cl_2N_4O_{8}$ - $P_2Pt_2.0.5 CH_3CN \cdot H_2O$ 1674.75 yellow $0.30 \times 0.20 \times 0.15$ monoclinic $P2_1/c$ 23.309(5) 14.645(3) 19.144(4) 90 94.91(3) 90 6511(2) 4 1.708 4.487 3292 50.64 7641 0.87 0.049 0.11 1.083 -1.221	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ \hline C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ 1.08 \\ 0.037 \\ 0.044 \\ 1.164 \\ -1.653 \\ \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12856\\ 0.93\\ 0.042\\ 0.062\\ 1\ 222\ -0\ 861 \end{array}$	2d $C_{101}H_{92}Cl_2N_4O$ $P_2Pt_2\cdot 2CH_2Cl_2$ 2256.78 orange $0.50 \times 0.25 \times 0.1$ monoclinic $P2_1/n$ 15.672(3) 34.206(7) 19.870(4) 90 106.16(3) 90 10231(4) 4 1.465 2.977 4544 51.10 12.371 0.81 0.050 0.114 1.073 - 1.041	² 8 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ 8066\\ 0.93\\ 0.046\\ 0.072\\ 0.839\\ -1\ 057\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2\ CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11\ 002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14\ 453 \\ 0.596 \\ 0.037 \\ 0.082 \\ 0\ 664 \ -0\ 614 \\ \end{array}$
Complex formula formula FW color crystal size [mm ³] crystal system space group a [Å] b [Å] c [Å] c [Å] a [°] β [°] γ [°] V [Å ³] Z ρ_{calcd} [g cm ⁻³] u [mm ⁻¹] F(000) $2\theta_{max}$ [°] no. unique data Gof [F^2] $R^{[a]}$ $R^{[a]}$ $R^{[b]}$ residual ρ [e Å ⁻³] CCDC number	$\begin{array}{c} \mathbf{2a} \\ \hline \mathbf{C}_{73}\mathbf{H}_{52}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O}_{8}^{-} \\ \mathbf{P}_{2}\mathbf{P}_{12}\cdot0.5\ \mathbf{CH}_{3}\mathbf{CN}\cdot\mathbf{H}_{2}\mathbf{O} \\ 1674.75 \\ \text{yellow} \\ 0.30 \times 0.20 \times 0.15 \\ \text{monoclinic} \\ \hline P2_{1}/c \\ 23.309(5) \\ 14.645(3) \\ 19.144(4) \\ 90 \\ 94.91(3) \\ 90 \\ 6511(2) \\ 4 \\ 1.708 \\ 4.487 \\ 3292 \\ 50.64 \\ 7641 \\ 0.87 \\ 0.049 \\ 0.11 \\ 1.083, -1.221 \\ 287990 \end{array}$	$\begin{array}{c} \textbf{2b} \\ \hline C_{81}H_{68}Cl_2N_4O_{8}-\\ P_2Pt_2\cdot 2\ CH_3CN \\ 1830.52 \\ yellow \\ 0.35\times 0.30\times 0.25 \\ monoclinic \\ C2/c \\ 13.315(3) \\ 27.131(5) \\ 21.041(4) \\ 90 \\ 98.47(3) \\ 90 \\ 7518(3) \\ 4 \\ 1.617 \\ 3.893 \\ 3640 \\ 50.90 \\ 6490 \\ 1.08 \\ 0.037 \\ 0.044 \\ 1.164, -1.653 \\ 287992 \end{array}$	$\begin{array}{c} 2c\\ \hline C_{85}H_{60}Cl_2N_4O_{8^-}\\ P_2Pt_2\cdot 3CH_3CN\\ 1910.54\\ yellow\\ 0.35\times 0.20\times 0.10\\ triclinic\\ P\bar{1}\ (no.\ 2)\\ 12.435(3)\\ 15.434(3)\\ 22.325(5)\\ 108.25(3)\\ 93.07(3)\\ 105.80(3)\\ 3869.9(15)\\ 2\\ 1.640\\ 3.786\\ 1894\\ 50.98\\ 12856\\ 0.93\\ 0.042\\ 0.062\\ 1.222,\ -0.861\\ 287986\\ \end{array}$	$\begin{array}{c} \mathbf{2d} \\ \hline \\ \mathbf{C}_{101}\mathbf{H}_{92}\mathbf{Cl}_{2}\mathbf{N}_{4}\mathbf{O} \\ \mathbf{P}_{2}\mathbf{Pt}_{2}\cdot2\mathbf{CH}_{2}\mathbf{Cl}_{2} \\ 2256.78 \\ \text{orange} \\ 0.50\times0.25\times0.1 \\ \text{monoclinic} \\ P2_{1}/n \\ 15.672(3) \\ 34.206(7) \\ 19.870(4) \\ 90 \\ 106.16(3) \\ 90 \\ 10231(4) \\ 4 \\ 1.465 \\ 2.977 \\ 4544 \\ 51.10 \\ 12371 \\ 0.81 \\ 0.050 \\ 0.114 \\ 1.073, -1.041 \\ 287991 \end{array}$	² 8 ⁻ •C₄H ₁₀ O	$\begin{array}{c} 2f\\ \hline \\ C_{89}H_{56}Cl_2F_{12}N_4O_{8^-}\\ P_2Pt_2\cdot 6CH_2Cl_2\\ 2569.95\\ orange\\ 0.40\times 0.15\times 0.12\\ monoclinic\\ C2/c\\ 22.067(4)\\ 25.992(5)\\ 18.102(4)\\ 90\\ 100.99(3)\\ 90\\ 10192(4)\\ 4\\ 1.675\\ 3.218\\ 5048\\ 50.68\\ 8066\\ 0.93\\ 0.046\\ 0.072\\ 0.839, -1.057\\ 287987\\ \end{array}$	$\begin{array}{c} \textbf{5b} \\ \hline \\ C_{116}H_{98}Cl_3N_6O_{12} \\ P_3Pt_3\cdot 2CH_3CN \\ 2634.64 \\ yellow \\ 0.35\times 0.3\times 0.2 \\ orthorhombic \\ P2_12_12_1 \\ 14.402(3) \\ 19.809(4) \\ 38.566(8) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 11002(4) \\ 4 \\ 1.591 \\ 3.987 \\ 5224 \\ 48.80 \\ 14453 \\ 0.596 \\ 0.037 \\ 0.082 \\ 0.664, -0.614 \\ 601688 \\ \end{array}$

[a] $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [b] $R_w = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{1/2}$.

P=2.243, Pt-C=2.00 Å).^[20] In the crystal structures of **1a**, **1c**, **3c**, **4b** and **4c**, the molecules are oriented in pairs *anti* to each other, with an intermolecular π ··· π stacking distance of about 3.5 Å and Pt···Pt distances greater than 4 Å.

Complexes 2a-2d and 2f consist of two (RC^N^N)Pt units bridged by a dppm ligand (Figure 4), while the three (RC^N^N)Pt moieties in **5b** are bridged by a dpmp ligand (Figure 5). The Pt-N, Pt-P and Pt-C distances (2.0-2.2, 2.22.3 and 2.0–2.1 Å, respectively; Table 3) in these complexes are similar to those in $[(C^NN^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (Pt– N=1.985 and 2.12, Pt–P=2.248 and Pt–C=2.024 Å).^[20] The intramolecular Pt···Pt distance of 3.165(1) Å in **2a** is slightly shorter than those in $[(C^NN^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (3.270),^[13,16,18,20] $[(C^NN^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ ·5 H₂O (3.245),^[13,16,18,20] $[(C^NN^N)_3Pt_3(\mu-dppm)](ClO_4)_3$ ·H₂O (3.190 and 3.399), $[(C^NN^N)_3Pt_3(\mu-dppm)](ClO_4)_3$ ·2 Et₂O·CH₃CN

A EUROPEAN JOURNAL

Table 3. Selected bond lengths [Å] and angles [°] for 1a, 1c, 2a-2d, 2f, 3c, 4b, 4c, and 5b.

					1a				
Pt(1)-C(1) N(2)-Pt(1)-C(1) N(1)-Pt(1)-Cl(1)	2.088(5) 80.1(2) 99.9(2)	Pt(1)-N(1) N(2)-Pt(1)-N(1)	1.997(8) 83.0(3)	Pt(1)-N(2) N(1)-Pt(1)-C(1)	1.958(5) 163.1(3)	Pt(1)-Cl(1) N(2)-Pt(1)-Cl(1)	2.314(2) 176.4(2)	C(1)-Pt(1)-Cl(1)	96.9(2)
Pt(1)-C(16) C(16)-Pt(1)-N(2) Cl(1)-Pt(1)-N(1)	2.08(2) 80.9(7) 99.5(6)	Pt(1)-N(1) N(1)-Pt(1)-N(2)	2.12(2) 82.2(8)	Pt(1)-N(2) N(1)-Pt(1)-C(16)	1c 1.94(2) 163.1(8)	Pt(1)-Cl(1) N(2)-Pt(1)-Cl(1)	2.314(6) 177.8(5)	Cl(1)-Pt(1)-C(16)	97.4(5)
$P_{t}(1) = C(1)$	2.04(1)	$P_{t}(1) = N(1)$	212(1)	$\mathbf{D}_{t}(1) = \mathbf{N}(2)$	2a	$D_{t}(1) = D(1)$	2 245(4)	$P_{t}(2) = C(25)$	202(2)
Pt(2) - N(3)	2.04(1) 2.16(1)	Pt(1)=N(1) Pt(2)=N(4)	2.12(1) 2.04(1)	Pt(1)=N(2) Pt(2)=P(2)	2.00(1) 2.252(4)	Pt(1) - Pt(2)	2.243(4) 3.165(1)	Ft(2) = C(23)	2.02(2)
C(1)-Pt(1)-N(2)	81.6(5)	N(1)-Pt(1)-N(2)	77.4(5)	C(1)-Pt(1)-P(1)	94.8(5)	N(1)-Pt(1)-P(1)	105.9(3)	C(25)-Pt(2)-N(4)	82.7(5)
N(3)-Pt(2)-N(4)	77.8(5)	C(25)-Pt(2)-P(2)	96.1(4)	N(3)-Pt(2)-P(2)	103.4(4)	Pt(1)-P(1)-P(2)-Pt(2)	16.3(1)		
Pt(1) = C(16)	2.007(5)	Pt(1) - N(1)	2158(4)	$P_{t}(1) = N(2)$	2b	$P_{t}(1) - P(1)$	2.248(1)	P t(1) P t(1*)	3 108(7)
C(16)-Pt(1)-N(2)	81.8(2)	N(1)-Pt(1)-N(2)	77.9(2)	C(16)-Pt(1)-P(1)	94.5(2)	N(1)-Pt(1)-P(1)	105.7(2)	$Pt(1)-P(1)-P(1^*)-Pt(1^*)$	29.69(5)
					2c				
Pt(1)-C(16)	2.010(8)	Pt(1)-N(1)	2.150(6)	Pt(1)-N(2)	2.017(6)	Pt(1)-P(1)	2.243(2)	Pt(2)-C(46)	2.032(7)
Pt(2) - N(3)	2.166(6)	Pt(2) - N(4)	2.049(6)	Pt(2) - P(2)	2.261(2)	$Pt(1) \cdots Pt(2)$	3.37(4)	$C(AC) \mathbb{D}(A) \mathbb{N}(A)$	00.5(2)
C(16)-Pt(1)-N(2) N(3)-Pt(2)-N(4)	81.8(3) 77 5(2)	N(1)-Pt(1)-N(2) C(46)-Pt(2)-P(2)	$\frac{77.7(2)}{96.5(2)}$	C(16)-Pt(1)-P(1) N(3)-Pt(2)-P(2)	94.6(2) 105 $4(2)$	N(1)-Pt(1)-P(1) Pt(1)-P(1)-P(2)-Pt(2)	105./(2) 1.82(8)	C(46)-Pt(2)-N(4)	80.5(3)
N(3)-1 (2)-N(4)	77.5(2)	C(40)-1 ((2)-1 (2)	<i>J</i> 0. <i>J</i> (<i>2</i>)	11(3)- $11(2)$ - $1(2)$	2d	1 ((1) - 1 (1) - 1 (2) - 1 ((2))	1.02(0)		
Pt(1)-C(1)	2.05(1)	Pt(1)-N(1)	2.167(9)	Pt(1)-N(2)	2.015(9)	Pt(1)-P(1)	2.261(3)	Pt(2)-C(39)	2.00(1)
Pt(2)-N(3)	2.15(1)	Pt(2)-N(4)	2.027(9)	Pt(2)-P(2)	2.247(3)	Pt(1)…Pt(2)	3.29(6)		
C(1)-Pt(1)-N(2)	82.2(4)	N(1)-Pt(1)-N(2)	77.2(4)	C(1)-Pt(1)-P(1)	93.7(3)	N(1)-Pt(1)-P(1)	107.0(3)	C(39)-Pt(2)-N(4)	81.7(4)
N(3)-Pt(2)-N(4)	//.9(4)	C(39)-Pt(2)-P(2)	95.9(3)	N(3)-Pt(2)-P(2)	104.5(2) 2 f	Pt(1)-P(1)-P(2)-Pt(2)	0.2(1)		
Pt(1)-C(1)	2.031(8)	Pt(1)–N(1)	2.034(6)	Pt(1)–N(2)	2.152(6)	Pt(1)-P(1)	2.255(2)	$Pt(1) \cdots Pt(2)$	3.28(4)
C(1)-Pt(1)-N(1)	81.8(3)	N(1)-Pt(1)-N(2)	77.2(2)	C(1)-Pt(1)-P(1)	94.9(2)	N(2)-Pt(1)-P(1)	106.0(2)	Pt(1)-P(1)-P(1*)-Pt(2*)	0.20(7)
					3 c				
Pt(1)-C(1)	2.00(2)	Pt(1) - N(1)	2.13(1)	Pt(1) - N(2)	1.976(6)	Pt(1) - P(2)	2.253(4)	C(1)-Pt(1)-N(2)	96.4(5)
N(2)-Pt(1)-N(1)	//.8(4)	N(2)-Pt(1)-C(1)	81.1(5)	N(2)-Pt(1)-P(2)	1/3.1(3) 4h	C(1)-Pt(1)-P(2)	96.4(5)	N(1)-Pt(1)-P(2)	105.1(5)
Pt(1)-C(16)	2.054(5)	Pt(1)-N(1)	2.023(4)	Pt(1) = N(2)	2.103(4)	Pt(1) = P(1)	2.283(2)		
C(16)-Pt(1)-N(2)	156.3(2)	N(1)-Pt(1)-N(2)	78.6(2)	C(16)-Pt(1)-P(1)	102.4(2)	N(2)-Pt(1)-P(1)	101.2(1)	N(1)-Pt(1)-C(16)	79.6(2)
N(1)-Pt(1)-P(1)	160.7(1)								
$P_{t}(1) = C(1)$	2.041(()	$D_{4}(1) = N_{1}(1)$	2 0 2 9 (4)	$D_{4}(1) = N_{1}(2)$	4c	$D_{4}(1) = D(1)$	2,207(1)		
$\Gamma(1) = C(1)$ C(1) = Pt(1) = N(2)	2.041(0) 156 6(2)	N(1) - N(1) N(1) - Pt(1) - N(2)	2.028(4) 77.8(2)	$P_{1}(1) = P_{1}(2)$ $C(1) = P_{1}(1) = P_{1}(1)$	2.134(3) 99.9(1)	P(1) = P(1) N(2)-Pt(1)-P(1)	2.297(1) 103 3(1)	N(1)-Pt(1)-C(1)	80 5(2)
N(1)-Pt(1)-P(1)	150.0(2) 165.9(1)	$(1)^{-1}(1)^{-1}(2)$	77.0(2)		<i>)).)</i> (1)	$\Pi(2)^{-1} \Pi(1)^{-1} \Pi(1)$	105.5(1)	N(1)-1 ((1)-C(1)	00.5(2)
					5b				
Pt(1)-C(1)	2.01(1)	Pt(1)-N(1)	2.157(9)	Pt(1)-N(2)	2.019(9)	Pt(1)-P(1)	2.255(3)	Pt(2)-N(4)	2.024(8)
Pt(2)-C(29)	2.06(1)	Pt(2) - N(3)	2.172(8)	Pt(2)-P(2)	2.263(3)	Pt(3) - N(6)	2.035(8)	Pt(3)-C(57)	2.05(1)
P((3)=N(3) $C(1)_Pt(1)_N(2)$	2.163(9) 81.0(4)	Pt(3)=P(3) C(1)=Pt(1)=N(1)	2.260(3) 159 1(4)	$N(2)_{Pt}(1)_{N(1)}$	78 2(3)	$C(1)_{-}Pt(1)_{-}P(1)$	100.0(3)	$N(2)_{Pt}(1)_{P(1)}$	173 2(3)
N(1)-Pt(1)-P(1)	100.9(2)	N(4)-Pt(2)-C(29)	81.5(4)	N(4)-Pt(2)-N(3)	76.0(3)	C(29)-Pt(2)-N(3)	157.2(3)	N(4)-Pt(2)-P(2)	174.3(3)
C(29)-Pt(2)-P(2)	95.0(3)	N(3)-Pt(2)-P(2)	107.7(2)	N(6)-Pt(3)-C(57)	80.5(4)	N(6)-Pt(3)-N(5)	77.9(3)	C(57)-Pt(3)-N(5)	158.5(3)
N(6)-Pt(3)-P(3)	175.6(3)	C(57)-Pt(3)-P(3)	98.4(3)	N(5)-Pt(3)-P(3)	103.1(2)		. /		

(3.364 and 3.617), $[(tBuC^N^N)_3Pt_3(\mu-dpmp)]$ -3.601) (ClO₄)₃·3 CH₃CN (3.217 and and $[(Et_2OCC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3 \cdot 2Et_2O \quad (3.466)$ and 3.647 Å).^[16] In the dinuclear complexes, the intramolecular Pt...Pt contacts are in the order: 2a (3.16(1)) < 2b(3.198(7)) < 2f (3.28(4)) < 2d (3.29(6)) < 2c (3.37(4) Å).These values fall in the range of intermetal separations normally observed for platinum(II) complexes containing an extended linear chain structure (3.09-3.50 Å). There is no close intermolecular Pt…Pt contact between adjacent $[(RC^{\wedge}N^{\wedge}N)_{2}Pt_{2}(\mu\text{-}dppm)]^{2+}$ molecules. In the trinuclear complex 5b, the intramolecular Pt1...Pt2 contact of 3.53 Å, Pt2...Pt3 contact of 3.30 Å and the Pt1...Pt2...Pt3 angle of

163° are indicative of the presence of weak $d^8 \cdots d^8$ and ligand-ligand interactions across Pt1--Pt2--Pt3. These values are similar to those in the trinuclear substituted (C^N^N) analogues $[(C^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3 \cdot H_2O$ (3.36, 3.62 Å, 162°), $[(tBuC^N^N)_3Pt_3(\mu-dpmp)]$ -(ClO₄)₃·2Et₂O·CH₃CN (3.22,3.60 Å, 157°) and $[(EtO_2CC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3 \cdot 2 CH_3CN$ (3.47,3.64 Å, 162°).^[16]

 $\pi \cdots \pi$ Stacking is an important structural feature in metal complexes containing chelating aromatic N-donor ligands.^[34] According to the Hunter–Sanders rules, an offset, slipped or parallel displaced staggered configuration is usually preferred over the face-to-face alignment of an eclipsed configura-

422 -

Figure 3. Molecular structures of a) 1a, b) 1c (torsion angle α (C11-C12-C25-C26)=31°), c) 3c (α (C12-C13-C25-C26)=42°), d) 4b, and e) 4c (α (C12-C13-C25-C26)=28°). The thermal ellipsoids are at 30% probability. All hydrogen atoms and solvent molecules have been omitted for clarity. The insets show the out-of-plane angle of Cl, PPh₃, or PCy₃.

tion in π -stacking aromatic moieties due to electrostatic repulsion.^[35] Eclipsed π -stacking of aromatic moieties shows an increased stability when the aromatic moieties bear an electronegative atom such as nitrogen. In the literature, an eclipsed alignment in metal complexes containing multidentate N-donor ligands remains sparse.^[34] In this work, the two (RC^N^N) planes in **2a** or **2b** adopt a staggered configuration such that a small deviation from co-planarity is observed. The interplanar distances of the Pt(RC^N^N) moieties, as estimated by the Pt…Pt separations of around 3.2 Å, are slightly shorter than those (3.4–4.6 Å) reported for most transition-metal pyridine or quinoline moieties^[35] (such as (2,2'-bipyridyl-*N*,*N*')dicyanoplatinum(II) and -palladium(II) (ca. 3.4 Å)^[36] and 3,4,7,8-tetramethyl-1,10-phenanthroline)copper(I)–acetone solvate (ca. 3.7 Å)^[37]) that are displaced in parallel at an angle of 16–40°.^[35] The α (Pt-P-P-Pt) torsion angles, between the two staggered (RC^N^N)Pt moieties in **2a** and **2b** are 16.3(1)° and 29.69(5)°, respectively. These torsion angles are significantly smaller than that of 44.6° in the 6-phenyl-2,2'-bipyridyl congener [(C^N^N)₂Pt₂-(μ -dppm)]^{2+,[13,16,18,20]} On the other hand, **2c**, **2d** and **2f** exhibit an almost eclipsed alignment of the two [(RC^N^N)Pt] planes, with estimated interplane distances of about 3.3–3.4 Å. The α (Pt-P-Pt) angles of **2c**, **2d** and **2f** are 1.82(8)°, 0.19(13)° and 0.20(7)° respectively; these angles are close to zero even though the complexes bear bulky R groups on the ligand (Ph in **2c**, 3,5-*t*Bu₂Ph in **2d** and 3,5-(CF₃)₂Ph in **2f**). Thus, the two (RC^N^N)Pt units

Figure 4. Molecular structures of a) 2a, b) 2b, c) 2c (torsion angle α (C11-C12-C25-C26)=21°), d) 2d (α (C12-C13-C25-C26)=31°), and e) 2f (α (C12-C13-C25-C26)=27°). The thermal ellipsoids are at 30% probability. All hydrogen atoms and solvent molecules have been omitted for clarity.

of these dinuclear Pt^{II} complexes are nearly parallel to each other and are related by a C_2 axis passing through the CH_2 moiety of the dppm ligand. We have observed previously that when the extent of π -conjugation in the cyclometalated ligand of dinuclear complexes (**2c**, **2d** and **2f**, where R involves a phenyl group) is increased, the extent of slipping or offset between the ligand planes is decreased (i.e. the preference for an eclipsed configuration is increased).

The three (RC^N^N)Pt units in **5b** are partially staggered, with α (Pt2-P-P-Pt3) and α (Pt1-P-P-Pt2) torsion

Figure 5. Molecular structure of 5b. The thermal ellipsoids are at 30% probability. All hydrogen atoms and solvent molecules have been omitted for clarity. Top: View from the top; bottom: view from the side.

longer parallel as in the dinuclear analogue 2b, presumably due to the bulkiness of the tert-butyl group on the (RC^N^N) ligand.

In previous work on the [(C^N^N)PtX] system, $^{[13,16,18,20]}$ shorter Pt-Pt distances are accompanied by a larger torsion angle between the two (C^N^N)Pt moieties. This was attributed to a repulsive effect between the (C^N^N) ligands in a staggered rather than an eclipsed conformation.^[35] In this work, the extended π -conjugation in (RC^N^N) leads to increased intramolecular metal-metal and ligand-ligand interactions in the dinuclear $[(RC^N^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ complexes. Such intramolecular interactions restrict the molecular motion of the flexible Pt-P-CH2-P-Pt moiety and could be the reason for the enhancement of the corresponding emission intensity in solution, as discussed in the following section.

Absorption and emission spectroscopy of the mononuclear complexes: The spectroscopic and photophysical data of 1a-1 f, 3c, 4b, 4c, 5b and 5d are listed in Table 5. The absorption spectra of 1a-1f, 3c, 4b and 4c reveal several intense transitions at λ_{max} values ranging from 250–390 nm. These were assigned to be mainly due to intraligand transitions since similar absorptions are found in the free (RC^N^NH) ligand.

The broad absorption at 400–470 nm ($\varepsilon \approx 6800$ – $10000 \text{ cm}^{-1} \text{mol}^{-1} \text{dm}^{3}$) for **1a–1f** could be attributed to a ¹MLCT (5d)Pt $\rightarrow \pi^{*}(L)$ transition, although mixing with IL could not be excluded. The absorption tail at around 500 nm assigned to a ³MLCT tentatively is transition.^[11,13,16,18,20,36,38,39] The absorption spectra of 1d in CH_2Cl_2 and DMF solution are depicted in Figure 6 as an example. The absorption band at around 450 nm exhibits only a small

DMF.

Complexes

solvatochromic shift (8 nm) on changing from CH₂Cl₂ to

[(RC^N^N)PtCl] are strongly emissive, with λ_{max} that depend on the substituent group R. The emission energy in solution follows the order: R = 3,5- $(tBu)_{2}Ph (1d, \lambda_{max} = 533 \text{ nm}) >$ phenyl (1c, 537) in CH_2Cl_2 (2× 10^{-5} M), and 3,5-F₂Ph (1e, 614) $> 3,5-(CF_3)_2Ph$ (1f, 618) in DMF $(2 \times 10^{-5} \text{ M})$. A similar trend has also been observed

for the emission of the $[(RC^N^N)Pt(PCy_3)]^+$

plexes 4b and 4c in MeCN

1a-1f

Table 4. Selected structural parameters regarding Pt...Pt interactions in dinuclear Pt^{II} complexes.

Complex	Pt…Pt distance	Torsion angle	Pt1…Pt2…Pt3 angle [°]
$[(C^N N^N) - Pt_{(u-dnnm)}]^{2+[a,b]}$	3 270	44.6	
$[((4-MeC_{\epsilon}H_{4})-C^{N}N)_{2}Pt_{2}(u-dppm)]^{2+[a,b]}$	3.245	20.7	_
$[((4-ClC_{6}H_{4})-C^{N}N)_{2}Pt_{2}(\mu-dppm)]^{2+[a,b]}$	3.150	27.2	_
2 a ^[b]	3.165	16.3	_
2b ^[b]	3.198	29.7	_
2c ^[b]	3.374	1.8	-
2d ^[b]	3.294	0.2	-
2 f ^[b]	3.276	0.2	_
5b	3.300, 3.533	8.9, 29.3	163
$[(C^N^N)_3Pt_3(\mu\text{-}dpmp)]^{3+[a]}$	3.194, 3.399; 3.364, 3.617	15.5, 26.3; 4.7, 34.6	162
$[(tBuC^N^N)_3Pt_3(\mu-dpmp)]^{3+[a]}$	3.217, 3.601	9.3, 29.6	157
$[(EtO_2CC^N^N)_3Pt_3(\mu\text{-}dpmp)]^{3+[a]}$	3.466, 3.647	8.9, 33.7	162

[a] See references [13], [16], [18], and [20]. [b] In syn-form.

angles of 29.3° and 8.9°, respectively, and estimated interplane distances of about 3.3-3.5 Å; these structural data resemble those in the trinuclear (C^N^N) analogues (5-35° and 3.2-3.7 Å).^[16] The Pt…Pt distances and torsion angles for the dinuclear and trinuclear complexes are listed in Table 4. The displaced (RC^N^N)Pt planes in 5b are no

 $(8 \times 10^{-5} \text{ m})$: R = phenyl (4c, 621 nm) < tBu (4b, 603). The emission spectra recorded for 1e and 1f in DMF solution are not vibronically resolved. We assigned the emission of 1a-1f, 3b, 4b and 4c at 525-618 nm (CH₂Cl₂, MeCN or DMF solution) to a triplet excited state with ³IL and ³MLCT parentage. There is a lack of dependence of the

com-

A EUROPEAN JOURNAL

Table 5. Spectroscopic and photophysical data for 1a-1f, 3c, 4b, and 4c.

	Medium	$\lambda_{\rm abs} [{\rm nm}]^{[{\rm a},{ m b}]}$	$\lambda_{\rm em} [\rm nm]^{[c]} (\tau [\mu s]);$	$\Phi_{ m em}{}^{[d]}$
	(T [K])	$(\varepsilon [\times 10^4 \text{ cm}^{-1} \text{mol}^{-1} \text{dm}^3])$	$k_{ m q} [10^9 { m s}^{-1} { m dm}^{-1} { m mol}^{-1}]^{[e]}$	
1a	CH ₂ Cl ₂ (298)	249 (6.29), 289 (3.84), 307 (4.36), 343 (3.37), 381 (1.12), 416 (0.48), 451 (0.18), 500 (~0.01)	529 (6), 566, 595 ^[f] ; 6.8	0.20
	solid (298)	_	588 (6), 635 (6), 694 (6)	_
	solid (77)	-	588 (14), 639 (14), 699 (14)	_
	2-MeTHF (77)	_	521 (88) 563 (88) 609 (88) ^[b]	_
1b	CH_2Cl_2 (298)	250 (5.01), 290 (3.54), 305 (3.46), 342 (2.68), 375 (0.92), 408 (0.44), 450 (0.11), 500 (~0.01)	525 (6), 566, 591 (6), 633, 703 ^[f] ; 0.8	0.29
	solid (298)	_	609 (1), 693 (1)	_
	solid (77)	_	578 (13), 593 (13), 626 (13)	_
	2-MeTHF (77)	-	518 (97), 567 (97), 576 (32), 624 (32) ^[b]	-
1c	CH ₂ Cl ₂ (298)	260 (6.40), 313 (4.69), 344 (3.04), 387 (0.99), 417 (0.60), 454 (0.10), 500 (~0.02)	537 (7), 570 ^[f] ; 9.0	0.42
	solid (298)	_	615 (5)	_
	solid (77)	-	603 (9), 654 (9)	_
	2-MeTHF (77)	-	525 (43), 567 (43), 614 (43) ^[b]	_
1 d	CH ₂ Cl ₂ (298)	254 (6.43), 314 (5.05), 344 (3.30), 386 (1.07), 415 (0.68), 458 (0.12), 500 (~0.01)	533 (7), 569 ^[f] ; 1.6	0.68
	DMF (298)	351 (4.84), 324 (4.89), 386 (1.22), 416 (0.78), 450 (0.22)	$601 \ (11)^{[f]}; 0.5$	0.02
	solid (298)	-	613 (2), 659 (2)	_
	solid (77)	_	610 (11), 659 (11), 720 (11)	_
	2-MeTHE (77)	_	$523(52),566(52),617(52)^{[b]}$	_
1e	DMF (298)	315 (4.19) 343 (2.88) 395 (1.09) 422 (0.64) 465 (0.11) 500 (~0.01)	$614 (07)^{[f]} \cdot 1.2$	0.03
	solid (298)	-	615(3), 661(3), 725(3)	_
	solid (77)		615(10), 668(10), 728(10)	_
	2-MeTHE (77)		$532 (33) 575 (33) 619 (33)^{[b]}$	_
1f	DMF(208)	316 (4 41) 344 (3 03) 305 (1 10) 427 (0 61) 467 (0 10) 500 (-0.04)	$618 (0.7)^{[f]} \cdot 0.9$	0.02
	solid (298)	510 (4.41), 544 (5.05), 555 (1.15), 427 (0.01), 407 (0.10), 500 (*0.04)	626(2)	0.02
	solid (270)		618(12) 660(12)	
	DME/MeOH/EtOH		537 (35) 596 (35) 650 (35) 715	
	(1,1,4) (77)		(25) ^[b]	_
2.	(1.1.4)(77)	106 (12.2) 247 (6.8) 210 (5.8) 288 (1.4) 500 (0.05)	$(33)^{1}$	0.02
30	meCN (296)	190 (15.2), 247 (0.8), 510 (5.8), 588 (1.4), 500 (~0.05)	$520(8), 500(8), 012(8)^{-1}, 2.1$	0.02
	solid (296)	-	599 (15), 050 (15), 707 (15)	_
	SOLID (77)	-	595(55), 051(55), 715(55)	-
	DMF/MEOH/EIOH	-	510 (850), 558 (850), 605 (850)	-
	(1:1:4)(7)		(02 (2) ^[b] 2 5	0.00
4 D	MeCN (298)	242 (5.4), 281 (4.0), 315 (4.0), 378 (1.2), 500 (~0.03)	$603(3)^{13}; 2.5$	0.08
	solid (298)	-	611 (11) (02 (12) (10 (12) 702 (12)	-
	solid (77)	-	603 (43), 640 (43), 702 (43)	-
	DMF/MeOH/EtOH	-	515 (880), 555 (880), 606 (880)	-
	(1:1:4) (77)			
4c	MeCN (298)	250 (6.9), 313 (5.3), 389 (1.3), 500 (~0.01)	$521, 561, 611 (3.0)^{101}; 2.2$	0.003
	solid (298)	-	633 (17)	-
	solid (77)	-	620 (74), 673 (74)	-
	DMF/MeOH/EtOH	-	521 (540), 564 (540), 611 (540)	-
	(1:1:4) (77)			

[a] Absorption maxima. [b] At 4×10⁻⁵ M. [c] Emission maxima. [d] Emission quantum yield. [e] Emission self-quenching constant. [f] At 2×10⁻⁵ M.

emission energies on the complex concentrations from 10^{-4} to 10^{-6} M, which suggests that these emissions are not excimeric ${}^{3}\pi - \pi^{*}$ or ${}^{3}MMLCT$ in nature; these emissions are probably ${}^{3}IL$ charge-transfer in nature. The emission of **1d** is affected by the solvent: its λ_{max} red-shifts from 533 nm in CH₂Cl₂ to 601 nm in DMF solution (Figure 6).

The emission quantum yields of **1a–1d** in CH₂Cl₂ solution range from 0.20 to 0.68, which are significantly higher than that of the congeners [(C^N^N)PtCl] ((C^N^N)=6-phenyl-2,2'-bipyridyl and derivatives; $\Phi \approx 0.03-0.07$).^[13,20] It is likely that the extended π -conjugated (RC^N^N) ligands have a rigid structure, which disfavors deactivation of the excited state by (a) non-radiative process(es). The emission quantum yields of **1e** and **1f** in DMF are 0.02–0.03, lower than that of **1a–1d** in CH₂Cl₂ solution, probably due to the quenching effect of DMF. When the auxiliary Cl ligand is replaced with PPh₃ or PCy₃, as in **3c**, **4b** and **4c**, the quantum yield (0.003–0.08) decreases significantly.

In the solid state at room temperature, **1a–1 f**, **3b**, **4b** and **4c** show a vibronic structured emission with λ_{max} at 588–633 nm. Upon cooling to 77 K, the emission is slightly blue-shifted. These emissions are assigned to ³MLCT excited states. Glassy solutions (2-MeTHF or DMF/MeOH/EtOH, 1:1:4, 4×10^{-5} M) of **1a–1 f**, **3b**, **4b** and **4c** were found to ex-

Figure 6. Absorption (top) and emission (bottom) spectra of 1d in CH_2Cl_2 and DMF solution. Inset: expanded spectra in the region of 400 to 550 nm.

hibit similar vibronically structured emissions, with peak maxima at 518–537 nm. The spacings are 1300–1400 cm⁻¹, which correspond to the skeletal vibrational frequencies of the C=C/C=N entities of the (RC^N^N) ligands.^[13,16,18,20]

Absorption and emission spectroscopy of the dinuclear and trinuclear complexes: Spectroscopic and photophysical data of 2a-2f, 5b and 5d are listed in Table 6. Dinuclear complexes 2a-2f show intense absorptions at around 390 nm $(\varepsilon \sim 2 \times 10^4 \text{ cm}^{-1} \text{ mol}^{-1} \text{ dm}^3)$, with tailing from around 420 to 525 nm ($\varepsilon \sim 0.2 \times 10^4 \text{ cm}^{-1} \text{ mol}^{-1} \text{ dm}^3$), while the trinuclear complexes 5b and 5d show intense absorptions band at around 400 nm ($\varepsilon \sim 2 \times 10^4$ cm⁻¹mol⁻¹dm³), with tailing from around 450 to 550 nm ($\varepsilon \sim 0.25 \times 10^4 \text{ cm}^{-1} \text{ mol}^{-1} \text{ dm}^3$) in MeCN. Their mononuclear congeners [(RC^N^N)PtCl] (1a-1f) have lower ε values in the spectral region around 475 nm. Previous works have shown that metal-metal and ligand-ligand interactions are present in these dinuclear Pt^{II} complexes, with intramolecular distances of 2.998-3.432 Å;^[13,16-18,20,38,39] such interactions, according to Miskowski and Houlding, destabilize the $d_\sigma{}^\ast$ orbital and stabilize the lowest unoccupied $\sigma^*(\pi)$ level, resulting in a red-shifted $d_{\sigma}^{*}{\rightarrow}\sigma^{*}(\pi)$ transition. $^{[8,40]}$ Therefore, the low-energy absorption tions at 420-525 nm for the dinuclear complexes and those at 450-550 nm for the trinuclear complexes are tentatively

assigned to excited states with mixed MMLCT ${}^{1}[d_{\sigma}^{*} \rightarrow \sigma(\pi^{*})]$ and IL ${}^{1}[\sigma^{*}(\pi) \rightarrow \sigma(\pi^{*})]$ parentage. A ${}^{1}MMLCT$ transition has previously been reported in $[Pt_2(tpy)_2(Gua)]^{3+}$ (tpy= 2,2':6',2"-terpyridine, Gua = guanidine anion),^[9] [Pt₂(tpy)₂(μ - $[pz]^{3+}$ (pz=pyrazole)^[17,39] and the 6-phenyl-2,2'-bipyridyl congener $[(C^N^N)_2Pt_2(\mu\text{-}dppm)]^{2+}$.^[13,16,18,20] All of the absorption bands described above obey Beer's Law in the concentration range 10^{-3} to 10^{-6} M, thereby suggesting that there is no dimerization or oligomerization of the metal complexes in the ground state. Complex 2d shows similar absorption profiles in MeCN, CH2Cl2, MeOH and DMF at room temperature; for example, the absorption band at about 470 nm exhibits only a small solvatochromic shift $(\pm 5 \text{ nm})$ upon changing the solvent from MeCN to CH₂Cl₂, MeOH and DMF (Figure 7). The absorption band of 5d at about 500 nm in MeCN, CH₂Cl₂, MeOH and DMF at room temperature exhibits a similarly small solvatochromic shift $(\pm 5 \text{ nm}; \text{Figure 8}).$

Complexes 2a–2f exhibit a peak maxima at 585–638 nm $(\Phi = 0.07 - 0.35)$ in acetonitrile at room temperature. The emission energy is affected by the substituent R on the (RC^N^N) ligand, and follows the order *t*Bu (2b, λ_{max} = 585 nm) > H (2a, 605) > 3,5-tBu₂Ph (2d, 609) > phenyl $(2c, 614) > 3,5-F_2Ph$ $(2e, 637) \sim 3,5-(CF_3)_2Ph$ (2f, 638).Complexes 5b and 5d are strongly emissive in acetonitrile, with λ_{max} at 626 ($\Phi = 0.33$) and 608 nm ($\Phi = 0.19$), respectively. In conjunction with the observed intramolecular Pt. Pt contacts in the crystal structures of 2a, 2c, 2d, 2f and 5b, the low-energy emission bands of the dinuclear and trinuclear complexes are assigned to a ³MMLCT ³[$d_{\sigma}^* \rightarrow \sigma(\pi^*)$] excited-state and are red-shifted in energy from that of their mononuclear congeners **1a–1d** and **1f** (λ_{max} =529, 525, 537, 533 and 618 nm, respectively). The latter emissions come from a ³MLCT excited state. At room temperature, the emissions of 2d in MeCN, CH₂Cl₂, MeOH and DMF solution are similar in energy; their λ_{max} undergo only a small solvatochromic shift (± 6 nm; Figure 7). However, the emission quantum yield of 2d is strongly affected by the solvent $(\Phi = 0.26$ in MeCN or CH₂Cl₂, 0.05 in MeOH and 0.08 in DMF; Figure 7), presumably due to a quenching effect in MeOH and DMF. While the emission quantum yield of 5d is affected by solvent ($\Phi = 0.19$ in MeCN, 0.29 in CH₂Cl₂, 0.04 in MeOH and <0.01 in DMF), the λ_{max} shows only a small solvatochromic shift $(\pm 6 \text{ nm})$ when the solvent is changed from MeCN to CH2Cl2, MeOH and DMF (Figure 8).

Complexes **2a–2f** in the solid state at room temperature show λ_{max} at 585–636 nm, which are blue-shifted to 569– 613 nm, upon cooling the samples to 77 K. In glassy solution (DMF/MeOH/EtOH, 1:1:4, 4×10^{-5} M), the emission is broad and intense, with λ_{max} ranging from 522 nm for **2d** to 605 nm for **2c**. The lack of vibronic structure and the concentration dependence suggest that the emission is unlikely to be ³IL or excimeric ${}^{3}\pi - \pi^{*}$. These emissions are probably ³MLCT in nature. Complexes **5b** and **5d** in the solid state at room temperature show λ_{max} at 623 and 618 nm, respectively, which blue shift to 603 and 605 nm, respectively, upon cooling the

A EUROPEAN JOURNAL

Table 6. Spectroscopic and photophysical data for **2a–2 f**, **5b**, and **5d**.

	Medium	$\lambda_{ m abs} [m nm]^{[a,b]}$	$\lambda_{\rm em} [\rm nm]^{[c,d]}$	$\Phi_{ m em}{}^{[e]}$
	(T [K])	$(\varepsilon [\times 10^4 \mathrm{cm}^{-1} \mathrm{mol}^{-1} \mathrm{dm}^3)$	(τ [μs])	
2a	MeCN (298)	237 (11.69), 305 (5.59), 392 (1.84), 476 (0.17), 500 (~0.07)	605 (1) ^[f]	0.27
	solid (298)	-	636 (6)	-
	solid (77)	-	597 (1)	-
	DMF/MeOH/EtOH (1:1:4) (77)	-	601 (253) ^[g]	-
2b	MeCN (298)	230 (11.69), 308 (5.36), 378 (1.65), 408 (1.50), 450 (0.52), 500 (0.20)	585 (2) ^[f]	0.35
	solid (298)	-	617 (101)	-
	solid (77)	-	613 (20), 665 (20)	-
	DMF/MeOH/EtOH (1:1:4) (77)	-	525 (240), 574 (240) ^[g]	-
2 c	MeCN (298)	242 (9.80), 306 (7.02), 391 (1.50), 464 (0.19), 500 (~0.08)	614 (2) ^[f]	0.32
	solid (298)	_	621 (4)	_
	solid (77)	-	569 (11), 611 (11), 668 (11)	-
	DMF/MeOH/EtOH, 1:1:4 (77)	-	605 (152) ^[g]	_
2 d	MeCN (298)	240 (11.69), 312 (8.05), 384 (2.14), 466 (0.40), 500 (0.19)	609 (3) ^[f]	0.26
	CH_2Cl_2 (298)	325 (11.0), 383 (3.45), 450 (0.48), 500 (0.19)	606 (3) ^[f]	0.26
	MeOH (298)	205 (14.8), 322 (8.8), 383 (2.5), 450 (0.33)	618 (13) ^[f]	0.05
	DMF (298)	323 (9.57), 381 (2.74), 415 (1.18), 475 (0.25), 500 (0.14)	603 (11) ^[f]	0.08
	solid (298)	_	585 (13)	_
	solid (77)	-	595 (59)	-
	DMF/MeOH/EtOH (1:1:4) (77)	-	522 (205), 564 (205) ^[g]	-
2 e	MeCN (298)	242 (12.41), 294 (8.76), 395 (2.18), 474 (0.51), 500 (0.33), 525 (0.17)	$637 (0.2)^{[f]}$	0.07
	solid (298)	-	600 (4), 635 (4)	-
	solid (77)	-	597 (7)	_
	DMF/MeOH/EtOH (1:1:4) (77)	-	618 (125) ^[g]	_
2 f	MeCN (298)	256 (11.59), 302 (7.25), 386 (2.05), 476 (0.17), 500 (~0.08)	$638 (0.2)^{[f]}$	0.09
	solid (298)	=	613 (2)	_
	solid (77)	-	609 (3)	_
	DMF/MeOH/EtOH (1:1:4) (77)	-	598 (103)	_
5b	MeCN (298)	237 (15.9), 303 (7.8), 400 (2.4), 475 (0.44), 500 (~0.22)	$626 (2.4)^{[f]}$	0.33
	solid (298)	_	623 (1.6) ^[f]	-
	solid (77)	-	603 (1.6) ^[f]	-
	DMF/MeOH/EtOH (1:1:4) (77)	-	530 (220), 577 (220) ^[g]	-
5d	MeCN (298)	238 (15.7), 314 (10.5), 400 (2.3), 450 (0.51), 500 (0.34)	$608 (1.7)^{[f]}$	0.19
	CH_2Cl_2 (298)	238 (18.3), 315 (12.3), 391 (3.1), 410 (2.8), 475 (0.4), 500 (0.25)	$606 \ (1.7)^{[f]}$	0.29
	MeOH (298)	205 (18.1); 240 (16.1), 314 (12.1), 404 (2.8), 475 (0.51), 500 (0.26)	601 (10) ^[f]	0.04
	DMF (298)	314 (12.6), 395 (3.0), 411 (2.9), 500 (0.29)	$607 (11)^{[f]}$	< 0.01
	solid (298)	=	618 (1.2)	-
	solid (77)	-	605 (4.6)	-
	DMF/MeOH/EtOH (1:1:4) (77)	-	519 (770), 563(770) ^[g]	-

[a] Absorption maxima. [b] At 1×10^{-5} M. [c] Emission maxima. [d] Self-quenching of emission is not observed. [e] Emission quantum yield. [f] At 2×10^{-5} M. [g] At 4×10^{-5} M.

samples to 77 K. In glassy solution (DMF/MeOH/EtOH, 1:1:4, 4×10^{-5} M), the emission is vibronically structured with peak maxima at 519–577 nm. The spacings of 1300–1400 cm⁻¹ correspond to the skeletal vibrational frequencies of the C=C/C=N entities of the (RC^N^N) ligands; therefore, we can assign these emissions as coming from a ³IL excited state.

Excited state reduction potential: The excited state reduction potential $(E_{\frac{1}{2}*})$, defined by $Pt_n^* + e^- \rightarrow [Pt_n]^-$ (n=1, 2, 3), of $[(RC^N^N)PtX](ClO_4)_n$, $[(RC^N^N)_2Pt_2(\mu\text{-dppm})]$ - $(ClO_4)_2$ and $[(RC^N^N)_3Pt_3(\mu\text{-dpmp})](ClO_4)_3]$ were estimated from the electrochemical and spectroscopic data using the equation $E_{\frac{1}{2}*} = E_{\frac{1}{2}} + E_{0-0}$.^[6,16] and compared to the values for $[4,4'-tBu_2(C^N^N)Pt(PPh_3)](ClO_4)$, $[4\text{-EtO}_2C-(C^N^N)Pt(PPh_3)](ClO_4)$, $[4,4'-tBu_2(C^N^N)_2Pt_2(dppm)]$ - $(ClO_4)_2$, $[[4\text{-EtO}_2C(C^N^N)]_2Pt_2(dppm)](ClO_4)_2$ and $[(C^N^N)_2Pt_2(dppm)]^{2+}$.^[6,16] $E_{\frac{1}{2}}$ values from the first reversible reduction wave were used in these calculations. The

 E_{0-0} transitions were estimated from the emission maxima of the complexes in alcoholic glassy solution at 77 K. These calculations ignore the differences between E_{0-0} and the emission maxima, in addition to any effect from employing different solvents in electrochemical and spectroscopic measurements; we are only interested in the relative trend in the excited state reduction potential of these complexes. The $E_{1/2}^*$ values for those complexes with an auxiliary Cl ligand (1a–1f), found at 0.5–0.6 V versus $Cp_2Fe^{+/0}$, are the lowest among the Pt^{II}(RC^N^N) complexes studied in this work. These values are smaller than those calculated for the dinuclear 6-phenyl-2,2'-bipyridyl mononuclear and (C^N^N) congeners (0.9–1.4 V).^[13,15,16] The other mononuclear complexes with PPh_3 and PCy_3 (3c, 4b and 4c) have $E_{i_{h}}^{*}$ values of 0.8–0.9 V. Of the dinuclear complexes, **2a** and 2c have low $E_{\frac{1}{2}}$ * values (0.6 V), while 2b, 2d, 2e and 2f have higher values of between 0.7 and 0.9 V versus Cp₂Fe^{+/0}. The $E_{i_b}^*$ values of the trinuclear complexes **5b** and **5d** are 0.7 and 0.9 V versus $Cp_2Fe^{+/0}$, respectively.

Figure 7. Absorption (top) and emission (bottom) spectra of **2d** in MeCN, CH₂Cl₂, MeOH and DMF solution.

Electroluminescence of 1a and 1d: The [(RC^N^N)PtCl] complexes possess high PL quantum yields and thermal stabilities yet they can be easily sublimed in vacuo. These properties render them suitable for applications in OLEDs. The OLEDs in this work were fabricated with 1–6% of **1a** or **1d** as the emitting dopant. The devices containing **1a** have the following configuration: ITO (indium tin oxide)/NPB (4,4'-bis[*N*-(1-naphthyl)-*N*-phenylamino]biphenyl 70 nm)/CBP (4,4'-*N*,*N*'-dicarbazolebiphenyl):**1a** (x%, 30 nm)/BCP (bathocuprine, 15 nm)/Alq₃ (tris(8-quinolinolato)aluminium, 30 nm)/LiF (0.3 nm)/Al (130 nm). A data summary for these devices is depicted in Table 7. A dopant concentration of

Table 7. EL data for 1a and 1d.

Device ^[a]	Complex	<i>x</i> ^[b] [%]	$\begin{array}{c} B_{\max} \left[\mathrm{cd}\mathrm{m}^{-2} \right] \\ \left(V \left[\mathrm{V} \right] \right)^{[\mathrm{c}]} \end{array}$	$CIE^{[d]}$ <i>x</i> , <i>y</i>	$\begin{array}{c} Eff_{\max} \left[\operatorname{cd} \mathbf{A}^{-1} \right] \\ \left(J \left[\operatorname{mA} \operatorname{cm}^{-2} \right] \right)^{\left[e \right]} \end{array}$
A	1a	5	37000 (20)	0.37, 0.58	15.4 (0.2)
B	1d	1	63 000 (20)	0.36, 0.54	12.5 (1.7)
С	1d	3	40 000 (21)	0.38, 0.55	20.2 (0.4)

[a] Devices **A**, **B**, and **C** gave a brightness of 1 cdm^{-2} at 5 V. [b] Dopant percentage of **1a** or **1d**. [c] Maximum brightness (B_{max}) achieved at voltage V. [d] 1931 Commission Internationale de l'Éclairage coordinates at achieved maximum brightness. [e] Maximum current efficiency (*Eff*_{max}) achieved at current density J.

FULL PAPER

Figure 8. Absorption (top) and emission (bottom) spectra of **5d** in MeCN, CH₂Cl₂, MeOH and DMF solution. Inset: expanded ε values versus wavelength plots in the 350 to 600 nm region.

5% (device **A**) gave the best performance. This device is a yellow-green light emitter; a strong emission was observed with peak maxima at 532 and 570 nm and a shoulder at about 610 nm, which could be attributed to the triplet excited state of **1a**. A brightness of 1 cd m^{-2} was obtained at 5 V. The maximum brightness of 37400 cd m^{-2} was achieved at 20 V, and the maximum current efficiency of 15.4 cd A^{-1} was reached at 0.2 mA cm^{-2} .

OLEDs employing 1d (1–12%) were prepared in the following configuration: ITO/NPB $(40 \text{ nm})/\text{CBP}:\mathbf{1d}$ (x %), 30 nm/BAlg₃ (bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum, 10 nm)/Alq₃ (30 nm)/LiF (0.1 nm)/Al (200 nm). Devices **B** (x=1%) and **C** (x=3%) gave the highest maximum brightness and current efficiency, respectively (Table 7). These devices are also yellowish-green light emitters and have similar CIE coordinates (Table 7). The EL λ_{max} (540 and 592 nm, with a shoulder at about 640 nm) is independent of the doping concentration for 1d. The good performance of these devices can be correlated to the high emission quantum yield, T_d , and T_s of 1d. Device B gave a brightness of 1 cdm^{-2} at 5 V, and a maximum current efficiency of $12.5 \text{ cd } \text{A}^{-1}$ was obtained at 1.8 mA cm^{-2} . This device is stable in terms of efficiency decay, and the efficiency was attained at 5 cd A⁻¹ when the current density was in-

creased to 600 mA cm^{-2} . A maximum brightness of $63\,000 \text{ cd m}^{-2}$ was achieved at 20 V (Figure 9); this is significantly higher than those yellow to yellowish-green OLEDs employing the 6-phenyl-2,2'-bipyridyl congener [(C^N^N)PtR]⁺ (maximum luminance = 7800 cd m⁻², λ_{max} =

Figure 9. J-V-B (current density-voltage-brightness) relationships of device **B**.

564 nm),^[15] [Pt(N₂O₂)] (4480 cdm⁻²; CIE x=0.42, y=0.56),^[33] Pt Schiff-base complexes (23000 cdm⁻²; CIE x=0.48, y=0.52),^[41] [(O^N^N)PtCl] ((O^N^N) = derivatives of 6-(2-hydroxyphenyl)-2,2'-bipyridyl; maximum luminance = 37000 cdm⁻², CIE x=0.48, y=0.51),^[32] [(X-bt)Pt(acac)] (11320 cdm⁻² at 14 V; CIE x=0.47, y=0.51; X-bt=substituted 2-phenylbenzothiazolato (X=H or F); acac=acetylacetonate),^[42] [Pt(N^N)₂] ((N^N)=5-(2-pyridyl)-3-trifluoromethylpyrazole; maximum luminance=41000 cdm⁻², CIE x=0.42, y=0.53; Table 8)^[43] and other non-Pt emitters as dopants.^[44-46]

Conclusions

In the past few years there has been an increasing interest in luminescent platinum(II) complexes, especially those with diimine and cyclometalated ligands, due to their possible application as phosphorescent materials for organic light-emitting devices.^[15,16,19,32,33,41,43,47-53] The mono-, di- and trinuclear (RC^N^N) complexes of platinum(II) reported in this work are strongly emissive and have high emission quantum yields in solutions at room temperature. The emission quantum yield of 1d (0.68 in CH₂Cl₂) is significantly higher than that of $[(C^N^N)PtCl]^{[13]}$ and $[Pt(tBu_2N_2O_2)]$,^[32] with the latter two showing emission at 565 ($\Phi = 0.025$) and 595 nm $(\Phi = 0.12)$, respectively, in CH₂Cl₂ solutions (Table 8). The ³MMLCT excited states of $[(RC^N^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (2b) and $[(RC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3$ (5b) have a high emission quantum yield (0.35 for 2b and 0.33 for 5b) in solution at room temperature, and this is quite uncommon for di- and trinuclear platinum(II) complexes. There are several unique features of the (RC^N^N) ligands that may account for the high emission quantum yields of their Pt^{II} complexes: 1) the extended π -conjugation would increase the electronic delocalization, hence a smaller bond displacement change in the excited state compared to those for (C^N^N) analogues is expected. This would lead to less effective non-radiative decay;^[54] 2) the rigid planar geometry of the (RC^N^N) ligands maintains the stereochemical integrity of the mononuclear complexes, and the extensive inter- and/or intramolecular $\pi \cdots \pi$ interactions reduce molecular motions, particularly at the flexible Pt-P-CH₂-P-Pt moiety in the binuclear complexes, and discourage excited state distortions, thereby reducing non-radiative decay. The mononuclear Cl-containing complexes 1a and 1c have an almost planar geometry that enables close intermolecular interplanar contacts. The dinuclear complexes 2c, 2d and 2f exhibit an eclipsed overlap of

Table 8. Comparison of the properties of the platinum(II) light-emitting materials.

		OLED Device Performance							
Complex	$\lambda_{\text{maxPL}}^{[a]}$	$arPsi_{ m em}{}^{[b]}$	$T_{d}^{[c]}$	$\lambda_{\text{maxEL}}^{[d]}$	CIE ^[e]	$x^{[f]}$	$B_{\rm max}$	Eff_{max}	
	[nm]		[°C]	[nm]	<i>x</i> , <i>y</i>	[%]	$[cd m^{-2}]$	$[cd A^{-1}]$ (L [m A cm ⁻²]) ^[h]	
								(J [IIIAciii])	
1a	529 (CH ₂ Cl ₂)	$0.20 (CH_2Cl_2)$	470	532, 570	0.37, 0.58	5	37000 (20)	15.4 (0.2)	
1d	533 (CH ₂ Cl ₂)	$0.68 (CH_2Cl_2)$	532	540, 592	0.38, 0.55	1	63 000 (20)	12.5 (1.7)	
[(C^N^N)PtCl] ^[i]	565 (CH ₂ Cl ₂)	0.025 (CH ₂ Cl ₂)	285	-	-	_	-	-	
$[(C^N^N)PtC \equiv CC_6H_5]^{[j]}$	582 (CH ₂ Cl ₂)	$0.04 (CH_2Cl_2)$	~400	564	0.48, 0.48	4	7800 (11)	2.4 (30)	
$[(C^N^N)PtC \equiv CC_6F_5]^{[j]}$	560 (CH ₂ Cl ₂)	$0.06 (CH_2Cl_2)$	~400	548	0.44, 0.51	4	9800 (12)	3.2 (20)	
$[(S^N^N)PtC \equiv CC_6H_4 - 4 - CH_3]^{[j]}$	616 (CH ₂ Cl ₂)	$0.04 (CH_2Cl_2)$	~400	612	0.59, 0.34	4	3100 (12)	1.0 (30)	
[(O^N^N)PtCl] ^[k]	606 (DMF)	0.01 (DMF)	388	564	0.48, 0.50	6	6000 (16)	2.9 (4.4)	
[(O^N^N)PtCl] ^[k]	600 (DMF)	0.02 (DMF)	421	565	0.51, 0.48	5	14000 (16)	9.7 (4.2)	
[(O^N^N)PtCl] ^[k]	593 (DMF)	0.03 (DMF)	425	564	0.50, 0.49	6	26000 (14)	13 (1.4)	
[(O^N^N)PtCl] ^[k]	618 (DMF)	0.01 (DMF)	351	572	0.53, 0.46	6	10000 (19)	7.3 (2.9)	
[(O^N^N)PtCl] ^[k]	606 (DMF)	0.04 (DMF)	426	566	0.48, 0.51	5	37000 (16)	7.8 (89)	
$[Pt(tBu_2N_2O_2)]^{[1]}$	595 (CH ₂ Cl ₂)	$0.12 (CH_2Cl_2)$	530	540	-	0.3	9330 (-)		
[(x-bt)Pt(acac)] ^[m]	531, 571 (CH ₂ Cl ₂)	_	_	_	0.47, 0.51	5	11 320 (14)	16 (2)	
$[Pt(N^N)_2]^{[n]}$	595 (solid state)	0.24 (solid state)	_	560	0.42, 0.53	20	41 000 (15)	20 (20)	

[a] Peak maximum of photoluminescence. [b] Emission quantum yield in solution. [c] Decomposition temperature. [d] Peak maximum of electroluminescence. [e] 1931 Commission Internationale de l'Éclairage coordinates. [f] Dopant percentage of platinum(II) complex. [g] Maximum brightness (B_{max}) achieved at voltage V. [h] Maximum current efficiency (*Eff_{max}*) achieved at current density J. [i] Reference [13]. [j] Reference [15]. [k] Reference [32]. [l] Reference [33]. [m] Reference [42]. [n] Reference [43].

```
430
```

the (RC^N^N) moieties with torsion angles close to 0°. In previous reports on $[Pt(C^N^N)]$ systems, shorter Pt...Pt distances are accompanied by a larger torsion angle between the two (C^N^N)Pt moieties. This was attributed to a minimal repulsive effect between the (C^N^N) ligands in a staggered rather than an eclipsed conformation.^[35] The extensive $\pi \cdots \pi$ interactions in $[(RC^NN)_2Pt_2(\mu-dppm)](ClO_4)_2$ are evident from the torsion angles in 2c, 2d and 2f (1.8°, 0.2° and 0.2°, respectively), which are significantly smaller than that in $[(C^N^N)_2Pt_2(\mu\text{-}dppm)]^{2+}$ (44.6°, Table 4). The [(RC^N^N)PtCl] complexes have been demonstrated to be useful phosphorescent materials. High-performance lightemitting devices have been fabricated from 1a and 1d; the performances of these yellow OLEDs are significantly better than those employing other platinum(II) complexes in terms of both luminance and efficiency. For example, the yellow OLED (EL λ_{max} = 536 nm) containing **1d** as the emitter exhibits a maximum luminance of $63\,000\,cd\,m^{-2}$ and a current efficiency of $12.5 \text{ cd } A^{-1}$ at a current density of 1.8 mA cm⁻², which are higher than those obtained with $[(O^N^N)PtCl]$ (566 nm, 37000 cd m⁻² and 7.8 cd A⁻¹ at 89 mA cm^{-2} , Table 8). The outstanding performance of these OLEDs can be related to the high emission quantum yields of [(RC^N^N)PtCl]. Due to the ease of modifying the chelating cyclometalated ligand, these complexes represent a new class of luminophores with tuneable excited-state properties. Along with their highly luminescent nature and appreciable thermal stability (with T_d up to around 530 °C for 1d), cyclometalated (RC^N^N) systems of platinum(II) with extended π -conjugation constitute a new class of lightemitting materials with potential practical applications.

Experimental Section

General considerations: Solvents were purified according to literature methods.^[55] 3-Acetylisoqulinoline was prepared from 3-hydroxyisoqulinoline by a Heck reaction.^[56] 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide was prepared by heating 3-acetylisoqulinoline with excess I2 in pyridine for 2 h.^[57-59] 3-Dimethylamino-1-(2'-naphthyl)propanone hydrochloride salt was synthesized by refluxing 2-acetylnaphthalene, paraformaldehyde and dimethylamine hydrochloride in the presence of conc. HCl in 95% ethanol for 24 h.^[59] The α,β -unsaturated ketones were prepared according to literature methods.^[60,61] The (RC^N^NH) ligands **a-f** were prepared by modification of published procedures.^[62] Electronimpact (EI) and fast atom bombardment (FAB) mass spectra were obtained with a Finnigan Mat 95 mass spectrometer. ¹H and ³¹P NMR spectra were recorded with Bruker AVANCE 600, DRX 400 and 500 FT-NMR spectrometers. The ¹H NMR chemical shifts were referenced to those of the residual proton/carbon atoms of CD₃CN, [D₇]DMF, CDCl₃ or CD₂Cl₂. H₃PO₄ was used in the ³¹P NMR study as external reference. Peak assignments were based on results of ¹H-¹H and NOESY 2D NMR experiments. Elemental analyses were performed at the Institute of Chemistry of the Chinese Academy of Science in Beijing.

Synthesis of (RC^N^NH) (a-f)

General procedure: Heating a mixture of 1-(2-(3'-isoquinolinyl)-2-oxoethyl)pyridinium iodide, 3-dimethylamino-1-(2'-naphthyl)propanone hydrochloride salt (for **a**) or the corresponding α , β -unsaturated ketone (for **b**-**f**) and excess ammonium acetate in methanol (100 mL) for 24 h gave **a**-**f**. The crude product was filtered from the solution mixture, washed with water and cold methanol, and purified by column chromatography (silica gel, *n*-hexane/CHCl₃=9:1 as eluent). The structures and numbering schemes of **a–f** for NMR peak assignment are depicted in Figure 1. **(HC^N^NH)** (a): 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (1.00 g, 2.66 mmol), 3-dimethylamino-1-(2'-naphthyl)propanone hydrochloride salt (0.70 g, 2.7 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **a** as an off-white solid. Yield: 0.53 g (60%); ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ =7.5–7.6 (m, 2H; H⁶ and H⁷), 7.7 (t, ³J_{H,H}=8 Hz, 1H; H²¹), 7.8 (t, ³J_{H,H}=9 Hz, 1H; H²⁰), 7.9–8.1 (m, 7H; H³, H⁵, H⁸, H¹², H¹³, H¹⁹ and H²²), 8.4 (dd, ⁴J_{H,H}=2, ³J_{H,H}=10 Hz, 1H; H²⁴), 8.5 (dd, ⁴J_{H,H}=1, ³J_{H,H}=9 Hz, 1H; H¹⁴), 8.7 (s, 1H; H¹⁰), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷); MS (70 eV, EI): *m/z* 332 [*M*⁺].

(*t*BuC^N^NH) (b): 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (0.47 g, 1.3 mmol), *tert*-butylidene-2-acetonaphthone (0.30 g, 1.3 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **b** as an off-white solid. Yield: 0.27 g (55%); ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): δ =1.5 (s, 9 H; C(CH₃)₃), 7.3-7.6 (m, 2H; H⁶ and H⁷), 7.6 (t, ³J_{H,H}=8 Hz, 1H; H²¹), 7.7 (t, ³J_{H,H}=8 Hz, 1H; H²⁰), 7.9 (m, 2H; H⁵ and H¹²), 8.0-8.1 (m, 4H; H³, H⁸, H¹⁰ and H²²), 8.4 (dd, ⁴J_{H,H}=2, ³J_{H,H}=5 Hz, 1H; H²), 8.6 (d, ⁴J_{H,H}=1.6 Hz, 1H; H¹⁴), 8.6 (s, 1H; H¹⁰), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷); MS (70 eV, EI): *m*/z 388 [*M*⁺].

(**PhC^N^NH**) (c): 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (1.00 g, 2.66 mmol), benzylidene-2-acetonaphthone (0.69 g, 2.7 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **c** as a white solid. Yield: 0.87 g (80%); ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 7.5 (t, ³J_{H,H} = 6 Hz, 1H; H²⁸), 7.5–7.6 (m, 4H; H⁵, H⁷ and H²⁷), 7.7 (t, ³J_{H,H} = 8 Hz, 1H; H²¹), 7.8 (t, ³J_{H,H} = 8 Hz, 1H; H²⁰), 7.9–8.0 (m, 3H; H⁸ and H²⁶), 8.0–8.1 (m, 4H; H³, H⁶, H¹⁹ and H²²), 8.1 (s, 1H; H¹²), 8.5 (d, ³J_{H,H} = 5 Hz, 1H; H²), 8.7 (s, 1H; H¹⁰), 8.8 (s, 1H; H¹⁴), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷); MS (70 eV, EI): *m/z* 408 [*M*⁺].

(3,5-*t***Bu₂PhC^N^NH) (d)**: 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (0.90 g, 2.4 mmol), 3',5'-di-*tert*-butylbenzylidene-2-acetonaphthone (0.89 g, 2.4 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **d** as a white solid. Yield: 0.89 g (72%); ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ =1.5 (s, 18H; C(CH₃)₃), 7.6–7.7 (m, 6H; H⁶, H⁸, H²¹, H²⁶ and H²⁸), 7.8 (t, ³J_{H,H}=8 Hz, 1H; H²⁰), 7.9–8.0 (m, 1H; H⁵), 8.0–8.1 (m, 5H; H³, H⁷, H¹², H¹⁹ and H²²), 8.5 (d, ³J_{H,H}=10 Hz, 1H; H²), 8.7 (s, 1H; H¹⁰), 8.8 (s, 1H; H¹⁴), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷); MS (70 eV, EI): *m*/*z* 520 [*M*⁺].

(3,5-F₂PhC^N^NH) (e): 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (1.91 g, 5.19 mmol), 3',5'-difluorobenzylidene-2-acetonaphthone (1.53 g, 5.19 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **e** as a white solid. Yield: 2.03 g (88.1%); ¹H NMR (400 MHz, CD₂Cl₂, 25 °C, TMS): δ =7.0 (t, ³J_{HF}=9 Hz, 1H; H²⁸), 7.4–7.5 (m, 2H; H²⁶), 7.6 (m, 2H; H⁶ and H⁸), 7.7 (t, ³J_{HH}=8 Hz, 1H; H²¹), 7.8 (t, ³J_{HH}=8 Hz, 1H; H²⁰), 8.0 (m, 1H; H⁵), 8.0–8.1 (m, 5H; H³, H⁷, H¹⁴, H¹⁹ and H²²), 8.5 (d, ³J_{HH}=10 Hz, 1H; H²), 8.7 (s, 1H; H¹⁰), 8.8 (s, 1H; H¹²), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷); ¹⁹F NMR (376 MHz, CD₂Cl₂, 25°C): δ = -109.6 ppm (t, ³J_{HF}=8 Hz); MS (70 eV, EI): m/z 444 [M⁺].

(3,5-(CF₃)₂PhC^N^NH) (f): 1-(2-(3'-Isoquinolinyl)-2-oxoethyl)pyridinium iodide (0.95 g, 2.5 mmol), 3',5'-bis(trifluoromethyl)benzylidene-2-aceto-naphthone (1.00 g, 2.54 mmol) and ammonium acetate (5.00 g, 64.9 mmol) gave **f** as a white solid. Yield: 1.2 g (85%); ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ =7.5–7.6 (m, 2H; H⁶ and H⁸), 7.7 (t, ³J_{H,H}=9 Hz, 1H; H²¹), 7.8 (t, ³J_{H,H}=8 Hz, 1H; H²⁰), 7.9–8.0 (m, 1H; H⁵), 8.0–8.1 (m, 6H; H³, H⁷, H¹², H¹⁹ and H²²), 8.3 (s, 2H; H²⁶), 8.4 (d, ³J_{H,H}=10 Hz, 1H; H²), 8.7 (s, 1H; H¹⁰), 8.8 (s, 1H; H¹⁴), 9.1 (s, 1H; H²⁴), 9.4 ppm (s, 1H; H¹⁷). ¹⁹F NMR (376 MHz, 25°C, TMS): δ =-62.6 ppm; MS (70 eV, EI): *m/z* 544 [*M*⁺].

Synthesis of [(RC^N^N)PtCl] (1a-1f)

General procedure: Refluxing a mixture of K_2PtCl_4 and the corresponding (RC^N^NH) (**a**-**f**) in glacial acetic acid (100 mL) for 24 h gave **1a**-**1f** as a yellow suspension. The yellow solid was isolated by filtration, washed with water and acetone, and recrystallized from CH₂Cl₂ (for **1a**, **1c** and **1d**) or DMF (for **1b**, **1e** and **1f**). Complexes **1a**-**1f** are insoluble in most organic solvents; they are slightly soluble in [D₇]DMF but the solubility is too low to allow for ¹³C NMR measurements. The structure

CHEMISTRY=

A EUROPEAN JOURNAL

and numbering scheme of 1a-1f for NMR peak assignment are depicted in Figure 1.

[(HC^N^N)PtCl] (1a): K₂PtCl₄ (0.22 g, 0.30 mmol) and **a** (0.10 g, 0.30 mmol) were used. Complex 1a was isolated as a yellow, crystalline solid. Yield: 0.13 g (80%); ¹H NMR (400 MHz, [D₇]DMF, 25 °C, TMS): δ =7.4 (t, ³J_{HH}=7 Hz, 1H; H⁶), 7.5 (t, ³J_{HH}=7 Hz, 1H; H⁷), 7.8 (d, ³J_{HH}=9 Hz, 1H; H⁸), 7.9 (d, ³J_{HH}=9 Hz, 1H; H⁵), 8.0 (t, ³J_{HH}=7 Hz, 1H; H²¹), 8.1–8.2 (m, 2H; H³ and H²⁰), 8.2–8.3 (m, 2H; H¹⁴ and H¹⁹), 8.3–8.4 (m, 3H; H¹⁰, H¹² and H¹³), 8.6 (t, ³J_{HH}=8.5 Hz, 1H; H²²), 9.2 (s, 1H; H²⁴), 9.8 ppm (s, 1H; H¹⁷); MS (+FAB): *m*/z 562 [*M*⁺]; elemental analysis calcd (%) for C₂₄H₁₅ClN₂Pt (561.9): C 51.30, H 2.69, N 4.99; found: C 51.10, H 2.69, N 4.99.

[(*t***BuC^N^N)PtCl] (1b):** K₂PtCl₄ (1.49 g, 3.58 mmol) and **b** (1.39 g, 3.58 mmol) were used. Complex **1b** was isolated as a yellow, crystalline solid. ¹H NMR spectroscopic data are not available due to the low solubility of **1b** in various deuterated solvents. Yield: 1.90 g (85.9 %); MS (+FAB): *m/z* 618 [*M*⁺]; elemental analysis calcd (%) for C₂₈H₂₃ClN₂Pt (618.0): C 54.42, H 3.75, N 4.53; found: C 52.74, H 3.95, N 4.60.

[(PhC^N^N)PtCl] (1c): K₂PtCl₄ (0.52 g, 1.3 mmol) and **c** (0.51 g, 1.3 mmol) were used. Complex **1c** was isolated as yellow crystals. Yield: 0.72 g (90%); ¹H NMR (400 MHz, [D₇]DMF, 25 °C, TMS): δ =7.4 (t, ³J_{H,H}=8 Hz, 1H; H⁶), 7.4 (t, ³J_{H,H}=8 Hz, 1H; H⁷), 7.6–7.7 (m, 3H; H¹⁰ and H²⁶), 7.7 (d, ³J_{H,H}=8 Hz, 1H; H⁸), 7.8 (d, ³J_{H,H}=8 Hz, 1H; H⁵), 7.9 (t, ³J_{H,H}=7 Hz, 1H, H²¹), 8.0 (t, ³J_{H,H}=8 Hz, 1H; H²⁰), 8.1 (d, ³J_{H,H}=8 Hz, 1H; H¹⁹), 8.2 (m, 3H; H²⁷ and H²⁸) 8.4–8.5 (m, 2H; H¹⁴ and H²²), 8.6 (s, 1H; H¹²), 9.3 (s, 1H; H²⁴), 9.7 ppm (s, 1H; H¹⁷); MS (+FAB): *m*/*z* 638 [*M*⁺]; elemental analysis calcd (%) for C₃₀H₁₉ClN₂Pt (638.0): C 56.48, H 3.00, N 4.39; found: C 56.04, H 3.02, N 4.50.

[(3,5-*t*Bu₂PhC[^]N[^]N)PtCl] (1d): K₂PtCl₄ (0.50 g, 1.2 mmol) and d (0.63 g, 1.2 mmol) were used. Complex 1d was isolated as an orange, crystalline solid. Yield: 0.73 g (80%); ¹H NMR (400 MHz, [D₇]DMF, 25 °C, TMS): δ =7.4 (t, ³J_{H,H}=7 Hz, 1H; H⁶), 7.4 (t, ³J_{H,H}=6.7 Hz, 1H; H⁷), 7.7 (d, ³J_{H,H}=7 Hz, 1H; H⁸), 7.8 (m, 2H; H⁵ and H²⁸), 7.9 (t, ³J_{H,H}=7 Hz, 1H; H²¹), 8.0–8.1 (m, 5H; H³, H¹⁹, H²⁰ and H²⁶), 8.4–8.5 (m, 3H; H¹⁰, H¹⁴ and H²²), 8.6 (s, 1H; H¹²), 9.3 (s, 1H; H²⁴), 9.7 ppm (s, 1H; H¹⁷); MS (+FAB): *m/z* 751 [*M*⁺]; elemental analysis calcd (%) for C₃₈H₃₅ClN₂Pt (750.2): C 60.84, H 4.70, N 3.73; found: C 60.91, H 4.77, N 3.80.

[(3,5-F₂PhC^N^N)PtCl] (1e): K₂PtCl₄ (0.79 g, 1.9 mmol) and **e** (0.85 g, 1.9 mmol) were used. Complex **1e** was isolated as a yellow, crystalline solid. Yield: 1.1 g (88%); ¹H NMR (400 MHz, [D₇]DMF, 25°C, TMS): δ =7.3 (t, ³J_{H,H}=8 Hz, 1 H; H⁶), 7.3 (t, ³J_{H,H}=8 Hz, 1 H; H⁷), 7.5 (d, ³J_{H,H}=8 Hz, 1 H; H⁸), 7.6 (d, ³J_{H,H}=7.8 Hz, 1 H; H⁵), 7.7-7.8 (m, 4 H; H³ H²¹ and H²⁶), 7.9 (t, ³J_{H,H}=7 Hz, 1 H; H²⁰), 8.0 (d, ³J_{H,H}=8 Hz, 1 H; H¹⁹), 8.1 (d, ³J_{H,H}=8 Hz, 1 H; H²²), 8.2 (s, 2 H; H¹⁰ and H¹²), 8.42 (s, 1 H; H¹⁴), 9.04 (s, 1 H; H²⁴), 9.29 ppm (s, 1 H; H¹⁷); ¹⁹F NMR (376 MHz, [D₇]DMF, 25°C): δ =-110.13 ppm (t, ³J_{H,F}=8 Hz); MS (+FAB): *m*/z 674 [*M*⁺]; elemental analysis calcd (%) for C₃₀H₁₇ClF₂N₂Pt (674.0): C 53.46, H 2.54, N 4.16; found: C 53.14, H 2.42, N 4.47.

[(3,5-(CF₃)₂PhC^N^N)PtCl] (1 f): K₂PtCl₄ (0.66 g, 1.6 mmol) and **f** (0.86 g, 1.6 mmol) were used. Complex **1 f** was isolated as a yellow, crystalline solid. Yield: 1.1 g (92%); ¹H NMR spectroscopic data are not available because of the low solubility of **1 f** in various deuterated solvents. ¹⁹F NMR (376 MHz, [D₇]DMF, 25°C): $\delta = -62.1$ ppm; MS (+FAB): *m/z* 774 [*M*⁺]; elemental analysis calcd (%) for C₃₂H₁₇ClF₆N₂Pt (774.0): C 49.66, H 2.21, N 3.62; found: C 49.67, H 2.01, N 3.72.

Synthesis of [(RC^N^N)₂Pt₂(µ-dppm)](ClO₄)₂ (2a-2 f)

General procedure: dppm (0.55 equiv) was added to a solution of $[(RC^N^N)PtCI]$ in an acetonitrile/dichloromethane mixture (40 mL, 1:1) with stirring. A clear yellow solution was obtained, to which an excess of $LiClO_4$ (10 equiv) was added. (**Caution!** perchlorate salts are potentially explosive and should be handled with care and in small amounts). The mixture was stirred at room temperature for 12 h, filtered and then concentrated on a rotary evaporator. Addition of diethyl ether gave the crude product as a bright yellow solid, which was washed with water and diethyl ether and recrystallized by diffusion of diethyl ether into an MeCN solution. Well-resolved ¹H NMR spectra for **2a–2 f** can be

obtained at -20 to -30 °C. The structures and numbering scheme of 2a-2f for NMR peak assignment are depicted in Figure 1.

[(HC^N^N)₂Pt₂(µ-dppm)](ClO₄)₂ (2a): Complex 1a (0.10 g, 0.18 mmol), dppm (0.034 g, 0.089 mmol) and LiClO₄ (0.50 g, 4.7 mmol) gave 2a as yellow crystals. Yield: 0.12 g (80%); ¹H NMR (500 MHz, CD₃CN, -30° C): $\delta = 5.1$ (t, ${}^{2}J_{H,P} = 13$ Hz, 2H; PCH₂P), 5.6 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H^{22}), 6.4 (s, 2H; H^{17}), 6.8 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H^{8}), 6.9 (t, ${}^{3}J_{H,H} = 7$ Hz, 2H; H⁷), 7.0 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H⁵), 7.0 (s, 2H; H¹⁰), 7.1 (t, ${}^{3}J_{H,H} =$ 7 Hz, 2H; H²¹), 7.2–7.3 (m, 4H; H³ and H⁶), 7.6 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹²), 7.7 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H; H²⁰), 7.8 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹⁴), 7.9 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹⁹), 8.0 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹³), 8.3 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dppm: 7.0-7.1 (m, 2H), 7.2 (t, ${}^{3}J_{\rm H,H} = 7$ Hz, 2H), 7.4–7.5 (m, 4H), 7.6 (t, ${}^{3}J_{\rm H,H} = 8$ Hz, 2H), 7.7–7.8 (m, 4 H), 8.2 (dd, ${}^{3}J_{H,H} = 8$, ${}^{3}J_{H,P} = 14.2$ Hz, 2 H), 8.4 (t, ${}^{3}J_{H,H} = 9$ Hz, 2 H), 8.6 ppm (t, ${}^{3}J_{H,H} = 8$ Hz, 2 H); 31 P NMR (162 MHz, CD₃CN, 25 °C): $\delta =$ 19.4 ppm (${}^{1}J_{P,Pt} = 4138 \text{ Hz}$); MS (+FAB): m/z 1437 [$M^{+}-2 \text{ ClO}_{4}$]; elemental analysis calcd (%) for C73H52Cl2N4O8P2Pt2 (1636.3): C 53.59, H 3.20, N 3.42; found: C 52.74, H 3.25, N 3.39.

 $[(tBuC^N^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (2b): Complex 1b (0.10 g, 0.16 mmol), dppm (0.031 g, 0.081 mmol) and LiClO₄ (0.50 g, 4.7 mmol) gave 2b as a yellow, crystalline solid. Yield: 0.098 g (70%); ¹H NMR (500 MHz, CD₃CN, -40 °C): $\delta = 1.5$ (s, 18H; *t*Bu), 5.1 (d, ${}^{3}J_{HH} = 8$ Hz, 2H; H²²), 5.2 (t, ${}^{2}J_{H,P}$ =12Hz, 2H; PCH₂P), 6.5 (s, 2H; H¹⁷), 7.0–7.1 (m, 8H; H³, H⁶, H¹⁰ and H²¹), 7.2 (t, ${}^{3}J_{H,H}=9$ Hz, 2H; H⁷), 7.3 (d, ${}^{3}J_{H,H}=$ 8 Hz, 2 H; H⁵), 7.4; (d, ${}^{3}J_{H,H}$ = 8 Hz, 2 H; H⁸), 7.4 (s, 2 H; H¹²), 7.7 (s, 2 H; H¹⁴), 7.8 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H; H²⁰), 7.9 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹⁹), 8.4 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dppm: 6.9 (t, ${}^{3}J_{HH} =$ 8 Hz, 2 H), 7.0–7.1 (m, 2 H), 7.3 (t, ${}^{3}J_{H,H} = 8$ Hz, 2 H), 7.5 (t, ${}^{3}J_{H,H} = 7$ Hz, 2H), 7.6 (dd, ${}^{3}J_{H,H} = 7$, ${}^{3}J_{H,P} = 14$ Hz, 2H), 7.7 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 7.7–7.8 (m, 2H), 8.1 (dd, ${}^{3}J_{H,H}=8$, ${}^{3}J_{H,P}=14$ Hz, 2H), 8.4 (t, ${}^{3}J_{H,H}=9$ Hz, 2H), 8.6 ppm (t, ${}^{3}J_{H,H} = 9$ Hz, 2 H); 31 P NMR (162 MHz, CD₃CN, 25 °C): $\delta =$ 18.0 ppm (${}^{1}J_{P,Pt} = 4084 \text{ Hz}$). MS (+FAB): m/z 1550 [$M^{+}-2 \text{ ClO}_{4}$]; elemental analysis calcd (%) for $C_{81}H_{68}Cl_2N_4O_8P_2Pt_2$ (1748.5): C 55.64, H 3.92, N 3.20; found: C 54.85, H 4.01, N 3.85.

[(PhC^N^N)₂Pt₂(μ-dppm)](ClO₄)₂ (2c): Complex 1c (0.15 g, 0.24 mmol), dppm (0.046 g, 0.12 mmol) and LiClO₄ (0.50 g, 4.7 mmol) gave 2c as a yellow, crystalline solid. Yield: 0.19 g (86%); ¹H NMR (500 MHz, [D₇]DMF, -30 °C): $\delta = 5.6$ (d, ${}^{3}J_{\rm H,\rm H} = 8$ Hz, 2H; H²²), 5.9 (t, ${}^{2}J_{\rm H,\rm P} = 138$ Hz, 2H; PCH₂P), 6.8 (s, 2H; H¹⁷), 6.9 (d, ${}^{3}J_{\rm H,\rm H} = 8$ Hz, 2H; H⁸), 7.1 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁷), 7.2 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁸), 7.1 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁷), 7.2 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁸), 7.1 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁷), 7.2 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁸), 7.1 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁷), 7.2 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 2H; H⁸), 7.8 (s, 2H; H¹⁰), 7.9–8.0 (m, 2H; H²⁰), 8.0 (d, ${}^{3}J_{\rm H,\rm H} = 8$ Hz, 4H; H²⁶), 8.1 (d, ${}^{3}J_{\rm H,\rm H} = 8$ Hz, 2H; H¹⁹), 8.6 and 8.7 (2 s, 4H; H¹² and H¹⁴), 9.4 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dpm: 7.3–7.4 (m, 4H), 7.7 (t, ${}^{3}J_{\rm H,\rm H} = 7$ Hz, 4H), 7.9–8.0 (m, 4H), 8.0–8.1 (m, 2H), 8.5 (t, 2H), 8.9 (H, ${}^{3}J_{\rm H,\rm H} = 8$ Hz, 2H), 9.3 ppm (t, ${}^{3}J_{\rm H,\rm H} = 9$ Hz, 2H); MS (+FAB): m/z 1590 [M⁺ – 2ClO₄]; elemental analysis calcd (%) for C₈₅H₆₀Cl₂N₄O₈P₂Pt₂ (1788.5): C 57.09, H 3.38, N 3.13; found: C 56.28, H 3.41, N 3.51.

[(3,5-*t*Bu₂PhC^N^N)₂Pt₂(µ-dppm)](ClO₄)₂ (2d): Complex 1d (0.12 g, 0.16 mmol), dppm (0.032 g, 0.083 mmol) and LiClO₄ (0.50 g, 4.7 mmol) gave 2d as a yellow, crystalline solid. Yield: 0.13 g (78%); ¹H NMR (500 MHz, CD₂Cl₂, -40 °C): $\delta = 1.3$ (s, 36H; tBu), 5.0 (t, ${}^{2}J_{HP} = 13$ Hz, 2H; PCH₂P), 6.2 (d, ${}^{3}J_{H,H}$ =11 Hz, 2H; H²²), 6.2 (s, 2H; H¹⁷), 6.3 (t, ${}^{3}J_{H,H} = 7 \text{ Hz}, 2 \text{ H}; \text{ H}^{6}$), 6.8 (d, ${}^{3}J_{H,H} = 8 \text{ Hz}, 2 \text{ H}; \text{ H}^{8}$), 6.9 (m, 4H; H⁵ and H⁷), 7.1 (s, 2H; H³), 7.3 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H; H²¹), 7.4 (s, 4H; H²⁶), 7.5 (s, 2H; H²⁸), 7.7 (t, J=8 Hz, 2H; H²⁰), 7.8 (s, 2H; H¹⁰), 7.9 (s, 2H; H¹²), 8.0 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H¹⁹), 8.3 (s, 2H; H¹⁴), 8.7 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dppm: 7.2–7.3 (m, 6H), 7.6 (t, ${}^{3}J_{HH} = 7$ Hz, 2H), 7.7 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 7.8 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 7.9 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 8.3 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 8.4 (dd, ${}^{3}J_{H,H} = 8$, ${}^{3}J_{H,P} = 14$ Hz, 2H), 8.5 ppm (t, ${}^{3}J_{H,H} = 9$ Hz, 2H); ${}^{31}P$ NMR (162 MHz, CD₂Cl₂, 25 °C): $\delta =$ 19.4 ppm (${}^{1}J_{P,Pt} = 4150 \text{ Hz}$); MS (+FAB): m/z 1914 [M^{+} -ClO₄], 1814 $[M^+-2 \text{ClO}_4]$; elemental analysis calcd (%) for $C_{101}H_{92}Cl_2N_4O_8P_2Pt_2$ (2012.9): C 60.27, H 4.61, N 2.78; found: C 59.92, H 4.64, N 3.15.

 (500 MHz, [D₇]DMF, -20°C): δ =5.9 (t, ²J_{HP}=13 Hz, 2H; PCH₂P), 6.0 (d, ³J_{HH}=8 Hz, 2H; H²²), 6.7(s, 2H; H¹⁷), 6.8–6.9 (m, 4H; H⁵ and H⁶), 7.1 (t, ³J_{HH}=7 Hz, 2H; H⁷), 7.2 (d, ³J_{HH}=8 Hz, 2H; H⁸), 7.3–7.4 (m, 4H; H³ and H²¹), 7.62 (t, ³J_{HF}=9 Hz, 2H; H²⁸), 7.9–8.0 (m, 6H; H²⁰ and H²⁶), 8.0–8.1 (m, 4H; H¹⁰ and H¹⁹), 8.7 (s, 2H; H¹²), 8.8 (s, 2H; H¹⁴), 9.3 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dppm: 7.3–7.40 (m, 4H), 7.7–7.8 (m, 6H), 7.9–8.0 (m, 2H), 8.0–8.1 (m, 2H), 8.5 (dd, ³J_{HH}=8, ³J_{HP}=15 Hz, 2H), 8.8 (t, ³J_{HH}=9 Hz, 2H), 9.1 ppm (t, ³J_{HH}=8.6 Hz, 2H); ¹⁹F NMR (376 MHz, [D₇]DMF): δ =19.9 ppm (¹J_{PPI}=4070 Hz); MS (+FAB): m/z 1761 [M⁺-ClO₄], 1661 [M⁺-2ClO₄]; elemental analysis calcd (%) for C₈₅H₅₆Cl₂F₄N₄O₈P₂Pt₂ (1860.4): C 54.88, H 3.03, N 3.01; found: C 53.94, H 3.32, N 3.83.

 $[(3,5-(CF_3)_2PhC^N^N)_2Pt_2(\mu-dppm)](ClO_4)_2$ (2 f): Complex 1 f (0.15 g, 0.19 mmol), dppm (0.037 g, 0.10 mmol) and LiClO₄ (0.50 g, 4.7 mmol) were used to gave 2f as an orange, crystalline solid. Yield: 0.18 g (90%); ¹H NMR (500 MHz, [D₇]DMF, -30 °C): $\delta = 5.9$ (t, ² $J_{H,P} = 13$ Hz, 2H; PCH₂P), 6.4 (d, ${}^{3}J_{H,H} = 9$ Hz, 2H; H²²), 6.4 (s, 2H; H¹⁷), 6.5 (t, ${}^{3}J_{H,H} =$ 7 Hz, 2H; H⁷), 6.7 (d, ${}^{3}J_{H,H}$ =8 Hz, 2H; H⁸), 7.0 (t, ${}^{3}J_{H,H}$ =7 Hz, 2H; H⁶), 7.2 (d, ${}^{3}J_{H,H} = 8$ Hz, 2H; H⁵), 7.5 (s, 2H; H³), 7.5–7.6 (m, 4H; H¹⁹ and H^{21}), 8.0 (t, ${}^{3}J_{H,H} = 7.6$ Hz, 2H; H^{20}), 8.2 (s, 2H; H^{10}), 8.45 (s, 2H; H^{28}), 8.8 (s, 4H; H²⁶), 9.0 (s, 2H; H¹²), 9.1 (s, 2H; H¹⁴), 9.2 ppm (s, 2H; H²⁴); the 20 protons of the phenyl rings in dppm: 7.4–7.5 (m, 4H), 7.5–7.6 (m, 2H), 7.8 (t, ${}^{3}J_{H,H} = 7$ Hz, 2H), 7.84 (t, ${}^{3}J_{H,H} = 8$ Hz, 2H), 7.9–8.0 (m, 2H), 8.0–8.1 (m, 2H), 8.6 (t, ${}^{3}J_{H,H}=11$ Hz, 2H), 8.8 (t, ${}^{3}J_{H,H}=8$ Hz, 2H), 9.1 ppm (t, ${}^{3}J_{HH} = 11$ Hz, 2H); ${}^{19}F$ NMR (376 MHz, [D₇]DMF, 25 °C): $\delta =$ -62.5 ppm; ³¹P NMR (162 MHz, [D₇]DMF, 25 °C): $\delta = 19.9 \text{ ppm}$ (¹ $J_{PPt} =$ 4184 Hz); MS (+FAB): m/z 1962 $[M^+-\text{ClO}_4]$, 1862 $[M^+-2 \text{ClO}_4]$; elemental analysis calcd (%) for C₈₉H₅₆Cl₂F₁₂N₄O₈P₂Pt₂ (2060.4): C 51.88, H 2.74, N 2.72; found: C 51.76, H 2.88, N 2.87.

Synthesis of [(RC^N^N)PtX](ClO₄) (3c: X = PPh₃; 4b,4c: X = PCy₃)

General procedure: PPh₃ or PCy₃ was added to a solution of the corresponding [(RC^N^N)PtCl] complex in a mixture of MeCN (20 mL) and CH₂Cl₂ (20 mL) whilst stirring. Excess LiClO₄ was then added to the clear yellow solution. (*Caution! Perchlorate salts are potentially explosive and should be handled with care in small amounts.*) After stirring at room temperature for 12 h, the mixture was filtered and the filtrate was concentrated. Addition of diethyl ether to the concentrated filtrate gave the crude product as a bright yellow solid, which was washed with water and diethyl ether. The solid was recrystallized by vapor diffusion of diethyl ether into a MeCN solution.

[(PhC^N^N)PtPPh₃](ClO₄) (3c): A mixture of 1c (0.10 g, 0.15 mmol), PPh₃ (0.04 g, 0.2 mmol) and excess LiClO₄ (0.50 g, 4.7 mmol) in MeCN/ CH₂Cl₂ gave 3c as yellow crystals. Yield: 0.10 g (80%); ¹H NMR (400 MHz, [D₇]DMF, 25 °C): $\delta = 6.9$ (d, ${}^{3}J_{\rm H,H} = 8$ Hz, 1H; H²²), 6.9 (s, 1H; H¹⁹), 7.3–7.4 (m, 3H; H⁸, H²⁰ and H²¹), 7.5 (s, 1H; H³), 7.6–7.7 (m, 9H; *m*-Ph, H²⁷ and H²⁸), 7.7 (t, ${}^{3}J_{\rm H,H} = 9$ Hz, 3H; *p*-Ph), 7.8 (d, ${}^{3}J_{\rm H,H} = 9$ Hz, 1H; H¹⁹), 7.9 (t, ${}^{3}J_{\rm H,H} = 8$ Hz, 1H; H⁶), 8.1 (t, ${}^{3}J_{\rm H,H} = 8$ Hz, 1H; H⁷), 8.1– 8.2 (m, 7H; H⁵ and *o*-Ph), 8.3 (d, ${}^{3}J_{\rm H,H} = 10$ Hz, 2H; H²⁶), 8.8 (s, 1H; H²⁴), 8.9 (s, 1H; H¹²), 9.0 (s, 1H; H¹⁴), 9.5 ppm (s, 1H; H¹⁰); MS (+FAB): *m/z* 864 [*M*⁺-ClO₄]; elemental analysis calcd (%) for C₄₈H₃₄ClN₂O₄PPt (964.3): C 59.79, H 3.55, N 2.91; found: C, 58.88, H 3.48, N 3.05.

[(*t*BuC^N^N)PtPCy₃](ClO₄) (4b): A mixture of 1b (0.03 g, 0.05 mmol), PCy₃ (0.015 g, 0.054 mmol) and excess LiClO₄ (0.50 g, 4.7 mmol) in MeCN/CH₂Cl₂ gave 4b as yellow crystals. Yield: 0.03 g (60 %); ¹H NMR (300 MHz, CD₃CN, 25 °C): δ = 1.1–1.3 (m, 9H; Cy), 1.6 (s, 9H; *t*Bu), 1.6– 1.8 (m, 15H; Cy), 2.2–2.3 (m, 6H; Cy), 2.7–2.8 (m, 3H; Cy), 7.4–7.6 (m, 2H; H²⁰ and H²¹), 7.8 (d, ³J_{H,H}=7.9 Hz, 1H; H¹⁹), 7.9 (d, ³J_{H,H}=8 Hz, 1H; H²²), 7.9–8.0 (m, 2H; H⁷ and H²⁴), 8.1 (t, ³J_{H,H}=5 Hz, 1H; H⁶), 8.2– 8.3 (m, 3H; H⁵, H¹² and H¹⁴), 8.4 (s, 1H; H¹⁷), 8.5 (d, ³J_{H,H}=8 Hz, 1H; H⁸), 9.0 (s, 1H; H¹⁰), 9.6 ppm (s, 1H; H³); MS (+FAB): *m*/z 863 [*M*⁺ –ClO₄]; elemental analysis calcd (%) for C₄₆H₅₆ClN₂O₄PPt·2 CH₃CN (1044.6): C 57.49, H 5.98, N 5.36; found: C 56.99, H 5.92, N 5.06.

[(PhC^N^N)PtPCy₃](ClO₄) (4c): A mixture of 1c (0.10 g, 0.15 mmol), PCy₃ (0.04 g, 0.1 mmol) and excess LiClO₄ (0.50 g, 4.7 mmol) in MeCN/ CH₂Cl₂ gave 4c as yellow crystals. Yield: 0.098 g (75%); ¹H NMR (400 MHz, CD₃CN, 25°C): δ =1.1-1.3 (m, 9H; Cy), 1.6-1.7 (m, 15H; Cy), 2.1–2.2 (m, 6H; Cy), 2.6–2.7 (m, 3H; Cy), 7.3–7.4 (m, 2H; H²⁰ and H²¹), 7.5–7.56 (m, 3H; H²⁷ and H²⁸), 7.6–7.7 (m, 1H; H²²), 7.7 (s, 1H; H¹²), 7.7–7.8 (m, 1H; H¹⁹), 7.8–7.9 (m, 3H; H⁷ and H²⁶), 8.0 (t, ${}^{3}J_{\rm H,\rm H}$ = 8 Hz, 1H; H⁶), 8.1 (s, 1H; H24), 8.1 (d, ${}^{3}J_{\rm H,\rm H}$ = 7 Hz, 1H; H⁵), 8.2 (s, 1H; H¹⁴), 8.2 (d, ${}^{3}J_{\rm H,\rm H}$ = 8 Hz, 1H; H⁸), 8.3 (s, 1H; H¹⁷), 8.8 (s, 1H; H¹⁰), 9.4 ppm (s, 1H; H³); MS (+FAB): *m/z* 882 [*M*⁺–ClO₄]; elemental analysis calcd (%) for C₄₈H₅₂ClN₂O₄PPt (982.5): C 58.68, H 5.33, N 2.85; found: C 58.68, H 5.49, N 3.29.

Synthesis of [(RC^N^N)_3Pt_3(\mu-dpmp)](ClO_4)_3 (5b and 5d)

General procedure: dpmp (0.33 equiv) was added to a solution of $[(RC^N^N)PtCl]$ in an acetonitrile/dichloromethane mixture (10 mL, 1:1) whilst stirring. A clear orange solution was obtained, to which excess LiClO₄ (10 equiv) was added. (*Caution! Perchlorate salts are potentially explosive and should be handled with care and in small amounts*). The mixture was stirred at room temperature for 12 h, filtered and concentrated. Addition of diethyl ether gave the crude product as a bright yellow solid, which was washed with water and diethyl ether and recrystallized by diffusion of diethyl ether into an acetonitrile solution. Since there are many non-equivalent protons in **5b** and **5d**, the peaks in the aromatic region of their ¹H NMR spectra were not assigned.

[(*t*BuC^N^N)₃Pt₃(μ-dpmp)](ClO₄)₃ (5b): Complex 1b (0.063 g, 0.10 mmol), dpmp (0.017 g, 0.034 mmol) and LiClO₄ (0.5 g, 4.7 mmol) gave 5b as a yellow, crystalline solid. Yield: 0.077 g (88%); ¹H NMR (400 MHz, CD₂Cl₂, 24°C): δ =1.3 (s, 9H, *t*Bu(central)), 1.5 ppm (s, 18 H, *t*Bu(terminal)); protons in the aromatic region were not assigned; ³¹P NMR (162 MHz, CD₂Cl₂, 24°C): δ =8.8 (¹*J*_{PPt}=4150 Hz, central), 10.7 ppm (¹*J*_{PPt}=4057 Hz, terminal); ¹⁹⁵Pt NMR (107 MHz, CD₂Cl₂, 24°C): δ =-3917.0 (d, ¹*J*_{PPt}=3959, terminal), -3779.7 ppm (d, ¹*J*_{PPt}=3980, central); MS (+FAB): *mlz* 2250 [*M*⁺-3 ClO₄]; elemental analysis calcd (%) for C₁₁₆H₉₈Cl₃N₆O₁₂P₃Pt₃ (2552.6): C 54.58, H 3.87, N 3.29; found: C 54.23, H 3.52, N 3.12.

[(3,5-*t***Bu₂PhC^NN)₃Pt₃(µ-dpmp)](ClO₄)₃ (5d): Complex 1d (0.1 g, 0.133 mmol), dpmp (0.022 g, 0.044 mmol) and LiClO₄ (0.5 g, 4.7 mmol) gave 5d as an orange, crystalline solid. Yield: 0.28 g (71%); ¹H NMR (400 MHz, CD₂Cl₂, 24°C): \delta=1.2 (s, 18H;** *t***Bu(central)), 1.3 ppm (s, 36H;** *t***Bu(terminal)); protons in the aromatic region were not assigned; ³¹P NMR (162 MHz, CD₂Cl₂, 24°C): \delta=9.7 (¹J_{PP1}=4042 Hz, central), 11.7 ppm (¹J_{PP1}=4094 Hz, terminal); ¹⁹⁵Pt NMR (107 MHz, CD₂Cl₂, 24°C): \delta=-3886.5 (d, ¹J_{PP1}=4070, terminal), -3727.8 ppm (d, ¹J_{PP1}=3995, central); MS (+FAB):** *mlz* **2650 [***M***⁺-3 ClO₄]; elemental analysis calcd (%) for C₁₄₆H₁₃₄Cl₃N₆O₁₂P₃Pt₃ (2949.2): C 59.46, H 4.58, N 2.85; found: C 59.11, H 4.65, N 2.73.**

X-ray crystallography: Crystals were mounted either inside a sealed capillary or on a thin glass fibre. Intensity data were collected at -20 °C on a MAR diffractometer with a 300-mm image plate detector using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å). The images were interpreted and intensity was integrated with the program DENZO.^[63] All structures were solved by direct methods implemented in the SIR-97^[64] program on a PC. The heavy atoms (such as Pt and P) were initially located in the partial structure solution from Fourier syntheses. The positions of other non-hydrogen atoms were located after a few cycles of refinement based on full-matrix least-squares of $|F^2|$ using the SHELXL-97 program suite.^[65] Solvent molecules and/or perchlorate anions in 1a, 1c, 2a-2d, 2f, 3c, 4b, 4c and 5b were found to be disordered and split occupancy factors (55:45) were assigned to each component of the same constrained thermal parameters. C-Cl distances of 1.720 ± 0.005 Å were applied to all the CHCl₃ and CH₂Cl₂ molecules. The positions of all aromatic hydrogen atoms were calculated from the idealized restrained positions (a riding model) with a fixed C-H distance of 0.96 Å. Isotropic thermal parameters of all hydrogen atoms were constrained to the value of 1.2-times those of the attached carbons.

Organic-light emitting devices (OLEDs): The electroluminescent (EL) devices were prepared on patterned indium-tin-oxide (ITO) glass with a sheet resistance of $20 \,\Omega/_{\Box}$. Thermal vacuum deposition of the materials was carried out sequentially under a vacuum of 1×10^{-6} Torr in a thin-film deposition system (an MBraun three-glove box system integrated with an Edwards Auto 306 and spin coater instrument). The devices were encapsulated using anodized aluminum caps and their performance was

CHEMISTRY=

A EUROPEAN JOURNAL

examined with a Photoresearch PR-650. The current–voltage characteristics were studied with a Keithley 2400 sourcemeter.

Acknowledgments

We gratefully acknowledge financial support by the University Development Fund (Nanotechnology Research Institute, 00600009) of The University of Hong Kong, Research Grants Council of HKSAR, China (HKU 7039/03P), Innovation and Technology Commission of the HKSAR Government (ITF GHP/062/05) and National Science Foundation of China/Research Grants Council Joint Research Scheme (N_HKU 742/04).

- S. W. Lai, C. M. Che, Topics in Current Chemistry, Vol. 241: Transition Metal and Rare Earth Compounds III: Excited States, Transitions, Interactions (Ed.: H. Yersin), Springer, New York, 2004, pp. 27-63.
- [2] C. E. Whittle, J. A. Weinstein, M. W. George, K. S. Schanze, *Inorg. Chem.* 2001, 40, 4053–4062.
- [3] M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, *Coord. Chem. Rev.* 2000, 208, 115–137.
- [4] B. Ma, J. Li, P. I. Djurovich, M. Yousufuddin, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2005, 127, 28–29.
- [5] C. Yu, K. M. C. Wong, K. H. Y. Chan, V. W. W. Yam, Angew. Chem. 2005, 117, 801–804; Angew. Chem. Int. Ed. 2005, 44, 791–794.
- [6] S. D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 1996, 118, 1949– 1960.
- [7] W. B. Connick, V. M. Miskowski, V. H. Houlding, H. B. Gray, *Inorg. Chem.* 2000, 39, 2585–2592.
- [8] V. M. Miskowski, V. H. Houlding, Inorg. Chem. 1991, 30, 4446– 4452.
- [9] H. K. Yip, C. M. Che, Z. Y. Zhou, T. C. W. Mak, J. Chem. Soc. Chem. Commun. 1992, 1369–1371.
- [10] V. M. Miskowski, V. H. Houlding, C. M. Che, Y. Wang, *Inorg. Chem.* 1993, 32, 2518–2524.
- [11] C. W. Chan, L. K. Cheng, C. M. Che, Coord. Chem. Rev. 1994, 132, 87–97.
- [12] S. W. Lai, M. C. W. Chan, K. K. Cheung, C. M. Che, *Inorg. Chem.* 1999, 38, 4262–4267.
- [13] S. W. Lai, M. C. W. Chan, T. C. Cheung, S. M. Peng, C. M. Che, *Inorg. Chem.* **1999**, *38*, 4046–4055.
- [14] B. C. Tzeng, S. C. Chan, M. C. W. Chan, C. M. Che, K. K. Cheung, S. M. Peng, *Inorg. Chem.* 2001, 40, 6699–6704.
- [15] W. Lu, B. X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S. T. Lee, C. M. Che, Chem. Commun. 2002, 206–207.
- [16] W. Lu, M. C. W. Chan, N. Zhu, C. M. Che, C. Li, Z. Hui, J. Am. Chem. Soc. 2004, 126, 7639–7651.
- [17] J. A. Bailey, V. M. Miskowski, H. B. Gray, *Inorg. Chem.* 1993, 32, 369–370.
- [18] L. Z. Wu, T. C. Cheung, C. M. Che, K. K. Cheung, M. H. W. Lam, *Chem. Commun.* 1998, 1127–1128.
- [19] W. Lu, B. X. Mi, M. C. W. Chan, Z. Hui, C. M. Che, N. Zhu, S. T. Lee, J. Am. Chem. Soc. 2004, 126, 4958–4971.
- [20] T. C. Cheung, K. K. Cheung, S. M. Peng, C. M. Che, J. Chem. Soc. Dalton Trans. 1996, 1645–1651.
- [21] C. W. Chan, T. F. Lai, C. M. Che, S. M. Peng, J. Am. Chem. Soc. 1993, 115, 11245–11253.
- [22] L. Chassot, A. Von Zelewsky, D. Sandrini, M. Maestri, V. Balzani, J. Am. Chem. Soc. 1986, 108, 6084–6085.
- [23] M. Maestri, D. Sandrini, V. Balzani, A. Von Zelewsky, P. Jolliet, *Helv. Chim. Acta* 1988, 71, 134–139.
- [24] M. Maestri, C. Deuschel-Cornioley, A. Von Zelewsky, *Coord. Chem. Rev.* 1991, 111, 117–123.
- [25] S. C. F. Kui, S. S. Y. Chui, C. M. Che, N. Zhu, J. Am. Chem. Soc. 2006, 128, 8297–8309.

- [26] F. Barigelletti, B. Ventura, J.-P. Collin, R. Kayhanian, P. Gavina, J.-P. Sauvage, *Eur. J. Inorg. Chem.* 2000, 113–119.
- [27] E. C. Constable, R. P. G. Henney, T. A. Leese, D. A. Tocher, J. Chem. Soc. Dalton Trans. 1990, 443–449.
- [28] W. Lu, M. C. W. Chan, K. K. Cheung, C. M. Che, Organometallics 2001, 20, 2477–2486.
- [29] P. H. M. Budzelaar, gNMR version 4.1.0., Cherwell Scientific Publishing, 1999.
- [30] CCDC-287984–287992, CCDC-601687, and CCDC-601688 contain the supplementary crystallographic data for 1c, 2a–2d, 2f, 3c, 4b, 4c, 1a, and 5b, respectively. These data can be obtained free of charge via www. ccdc.cam.ac.uk/data_request/cif.
- [31] D. A. Bardwell, J. G. Crossley, J. C. Jeffery, A. G. Orpen, E. Psillakis, E. E. M. Tilley, M. D. Ward, *Polyhedron* **1994**, *13*, 2291–2300.
- [32] C. C. Kwok, H. M. Y. Ngai, S. C. Chan, I. H. T. Sham, C. M. Che, N. Zhu, *Inorg. Chem.* 2005, 44, 4442–4444.
- [33] Y. Y. Lin, S. C. Chan, M. C. W. Chan, Y. J. Hou, N. Zhu, C. M. Che, Y. Liu, Y. Wang, *Chem. Eur. J.* 2003, *9*, 1263–1272.
- [34] C. Janiak, J. Chem. Soc. Dalton Trans. 2000, 3885-3896.
- [35] C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525– 5534.
- [36] C. M. Che, L. Y. He, C. K. Poon, T. C. W. Mak, *Inorg. Chem.* 1989, 28, 3081–3083.
- [37] A. F. Stange, T. Sixt, W. Kaim, Chem. Commun. 1998, 469-470.
- [38] K. T. Wan, C. M. Che, K. C. Cho, J. Chem. Soc. Dalton Trans. 1991, 1077–1080.
- [39] J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P. Schaefer, H. B. Gray, *Inorg. Chem.* **1995**, *34*, 4591–4599.
- [40] V. H. Houlding, V. M. Miskowski, Coord. Chem. Rev. 1991, 111, 145-152.
- [41] C. M. Che, S. C. Chan, H. F. Xiang, M. C. W. Chan, Y. Liu, Y. Wang, *Chem. Commun.* 2004, 1484–1485.
- [42] I. R. Laskar, S.-F. Hsu, T.-M. Chen, Polyhedron 2005, 24, 881-888.
- [43] S.-Y. Chang, J. Kavitha, S.-W. Li, C.-S. Hsu, Y. Chi, Y.-S. Yeh, P.-T. Chou, G.-H. Lee, A. J. Carty, Y.-T. Tao, C.-H. Chien, *Inorg. Chem.* 2006, 45, 137–146.
- [44] X. Q. Lin, B. J. Chen, X. H. Zhang, C. S. Lee, H. L. Kwong, S. T. Lee, *Chem. Mater.* 2001, 13, 456–458.
- [45] M. Mazzeo, D. Pisignano, L. Favaretto, G. Barbarella, R. Cingolani, G. Gigli, Synth. Met. 2003, 139, 671–673.
- [46] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adacjo, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304–4312.
- [47] W. Sotoyama, T. Satoh, N. Sawatari, H. Inoue, Appl. Phys. Lett. 2005, 86, 153505/1–153505/3.
- [48] H. F. Xiang, S. C. Chan, K. K. Y. Wu, C. M. Che, P. T. Lai, *Chem. Commun.* 2005, 1408–1410.
- [49] J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y.-T. Tao, C.-H. Chien, A. J. Carty, *Adv. Funct. Mater.* 2005, *15*, 223–229.
- [50] W.-Y. Wong, Z. He, S.-K. So, K.-L. Tong, Z. Lin, Organometallics 2005, 24, 4079–4082.
- [51] M. Cocchi, V. Fattori, D. Virgili, C. Sabatini, P. Di Marco, M. Maestri, J. Kalinowski, Appl. Phys. Lett. 2004, 84, 1052–1054.
- [52] B. W. D'Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, Adv. Mater. 2002, 14, 1032–1036.
- [53] S. C. Chan, M. C. W. Chan, Y. Wang, C. M. Che, K. K. Cheung, N. Zhu, *Chem. Eur. J.* 2001, 7, 4180–4190.
- [54] G. F. Strouse, J. R. Schoonover, R. Duesing, S. Boyde, W. E. J. Jones, T. J. Meyer, *Inorg. Chem.* **1995**, *34*, 473–487.
- [55] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, *Purification of Labo*ratory Chemicals, 2nd ed. Pergamon, Oxford, **1980**.
- [56] J. Y. Legros, G. Primault, J. C. Fiaud, *Tetrahedron* 2001, 57, 2507– 2514.
- [57] R. G. Pearson, J. Am. Chem. Soc. 1947, 69, 3100-3103.
- [58] L. C. King, M. McWhirter, R. L. Rowland, J. Am. Chem. Soc. 1948, 70, 239–242.
- [59] F. F. Blicke, J. H. Burckhalter, J. Am. Chem. Soc. 1942, 64, 451-454.

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Chem. Eur. J. 2007, 13, 417-435

434

-4

- [60] G. W. V. Cave, C. L. Raston, J. Chem. Soc. Perkin Trans. 1 2001, 3258-3264.
- [61] F. Neve, A. Crispini, S. Campagna, Inorg. Chem. 1997, 36, 6150– 6156.
- [62] P. S. Kendurkar, R. S. Tewari, J. Chem. Eng. Data 1974, 19, 184–188.
- [63] DENZO: In the HKL Manual—A description of programs DENZO, XDISPLAYF and SCALEPACK; written by D. Gewirth with the cooperation of the program authors Z. Otwinowski and W. Minor; Yale University: New Haven, CT (USA), 1995.
- [64] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115–119.
- [65] G. M. Sheldrick, SHELXS-97, Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.

Received: May 17, 2006 Revised: June 23, 2006 Published online: November 30, 2006